text2svg-demo-app / eval_analysis.py
Jinglong Xiong
add analysis script
c0f4df5
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import json
from pathlib import Path
# Set style
plt.style.use('ggplot')
sns.set_palette("Set2")
plt.rcParams['figure.figsize'] = (12, 8)
# Load the data
results_csv = "results/summary_20250421_230054.csv"
results_json = "results/results_20250421_230054.json"
df = pd.read_csv(results_csv)
# Extract category from description if not already available
def extract_category(row):
"""
Determines the category of an image based on its description or existing category.
Args:
row: A pandas DataFrame row containing 'category' and 'description' fields
Returns:
str: The determined category ('fashion', 'landscape', 'abstract', or 'unknown')
"""
if pd.notna(row['category']) and row['category'] != 'unknown':
return row['category']
# Try to extract from description
desc = row['description'].lower()
if any(keyword in desc for keyword in ['coat', 'pants', 'shirt', 'dress', 'scarf', 'shoes']):
return 'fashion'
elif any(keyword in desc for keyword in ['forest', 'beach', 'mountain', 'ocean', 'lake', 'sky']):
return 'landscape'
elif any(keyword in desc for keyword in ['rectangle', 'circle', 'triangle', 'shape', 'spiral']):
return 'abstract'
else:
return 'unknown'
# Clean the data
df['category'] = df.apply(extract_category, axis=1)
df['generation_time'] = pd.to_numeric(df['generation_time'], errors='coerce')
# 1. Model Performance Comparison
def plot_model_comparison():
"""
Creates boxplots comparing model performance across three metrics:
VQA score, aesthetic score, and fidelity score.
Saves the resulting plot to 'results/model_comparison.png'.
"""
fig, axes = plt.subplots(1, 3, figsize=(18, 6))
metrics = ['vqa_score', 'aesthetic_score', 'fidelity_score']
titles = ['VQA Score', 'Aesthetic Score', 'Fidelity Score']
for i, (metric, title) in enumerate(zip(metrics, titles)):
sns.boxplot(x='model', y=metric, data=df, ax=axes[i])
axes[i].set_title(f'{title} by Model')
axes[i].set_ylim([0, 1])
plt.tight_layout()
plt.savefig('results/model_comparison.png')
plt.close()
# 2. Category Performance Analysis
def plot_category_performance():
"""
Creates boxplots showing performance by category and model for three metrics:
VQA score, aesthetic score, and fidelity score.
Saves the resulting plot to 'results/category_performance.png'.
"""
fig, axes = plt.subplots(1, 3, figsize=(18, 6))
metrics = ['vqa_score', 'aesthetic_score', 'fidelity_score']
titles = ['VQA Score', 'Aesthetic Score', 'Fidelity Score']
for i, (metric, title) in enumerate(zip(metrics, titles)):
sns.boxplot(x='category', y=metric, hue='model', data=df, ax=axes[i])
axes[i].set_title(f'{title} by Category and Model')
axes[i].set_ylim([0, 1])
if i > 0:
axes[i].get_legend().remove()
axes[0].legend(title='Model')
plt.tight_layout()
plt.savefig('results/category_performance.png')
plt.close()
# 3. Generation Time Analysis
def plot_generation_time():
"""
Creates visualizations of generation time analysis:
1. A boxplot showing generation time by model
2. Scatter plots showing the relationship between generation time and quality metrics
Saves the resulting plots to 'results/generation_time.png' and 'results/quality_vs_time.png'.
"""
plt.figure(figsize=(10, 6))
sns.boxplot(x='model', y='generation_time', data=df)
plt.title('Generation Time by Model')
plt.ylabel('Time (seconds)')
plt.tight_layout()
plt.savefig('results/generation_time.png')
plt.close()
# Generation time vs quality scatter plot
fig, axes = plt.subplots(1, 3, figsize=(18, 6))
metrics = ['vqa_score', 'aesthetic_score', 'fidelity_score']
titles = ['VQA Score', 'Aesthetic Score', 'Fidelity Score']
for i, (metric, title) in enumerate(zip(metrics, titles)):
for model, color in zip(df['model'].unique(), ['#1f77b4', '#ff7f0e']):
model_data = df[df['model'] == model]
axes[i].scatter(model_data['generation_time'], model_data[metric],
alpha=0.6, label=model, c=color)
axes[i].set_title(f'{title} vs. Generation Time')
axes[i].set_xlabel('Generation Time (seconds)')
axes[i].set_ylabel(title)
axes[i].legend()
plt.tight_layout()
plt.savefig('results/quality_vs_time.png')
plt.close()
# 4. Description complexity vs performance
def plot_complexity_performance():
"""
Analyzes the relationship between description complexity (word count) and
performance metrics, creating scatter plots with trend lines.
Saves the resulting plot to 'results/complexity_performance.png'.
"""
df['description_length'] = df['description'].str.len()
df['word_count'] = df['description'].str.split().str.len()
fig, axes = plt.subplots(1, 3, figsize=(18, 6))
metrics = ['vqa_score', 'aesthetic_score', 'fidelity_score']
titles = ['VQA Score', 'Aesthetic Score', 'Fidelity Score']
for i, (metric, title) in enumerate(zip(metrics, titles)):
for model, color in zip(df['model'].unique(), ['#1f77b4', '#ff7f0e']):
model_data = df[df['model'] == model]
axes[i].scatter(model_data['word_count'], model_data[metric],
alpha=0.6, label=model, c=color)
# Add trendline
z = np.polyfit(model_data['word_count'], model_data[metric], 1)
p = np.poly1d(z)
axes[i].plot(sorted(model_data['word_count']), p(sorted(model_data['word_count'])),
c=color, linestyle='--')
axes[i].set_title(f'{title} vs. Description Complexity')
axes[i].set_xlabel('Word Count')
axes[i].set_ylabel(title)
axes[i].legend()
plt.tight_layout()
plt.savefig('results/complexity_performance.png')
plt.close()
# 5. Success and failure examples
def analyze_best_worst_examples():
"""
Identifies and prints the top 10 most successful and least successful generations
based on fidelity score.
Creates directories for sample SVG and PNG files if they don't exist.
Returns:
tuple: (success_df, failure_df) DataFrames containing the best and worst examples
"""
# Create directory for result samples
Path("results/sample_svg").mkdir(exist_ok=True)
Path("results/sample_png").mkdir(exist_ok=True)
# Load detailed results
with open(results_json, 'r') as f:
results_data = json.load(f)
# Create success/failure dataframes
success_df = df.nlargest(10, 'fidelity_score')
failure_df = df.nsmallest(10, 'fidelity_score')
# Print success examples
print("Top 10 Successful Generations:")
print(success_df[['model', 'description', 'vqa_score', 'aesthetic_score', 'fidelity_score']].to_string(index=False))
# Print failure examples
print("\nTop 10 Failed Generations:")
print(failure_df[['model', 'description', 'vqa_score', 'aesthetic_score', 'fidelity_score']].to_string(index=False))
return success_df, failure_df
# 6. Summary statistics
def print_summary_stats():
"""
Calculates and prints summary statistics for model performance:
1. Overall stats by model (mean, std, min, max for each metric)
2. Performance by category and model
Also creates a radar chart visualizing fidelity scores by category and model,
saved to 'results/category_radar.png'.
"""
# Overall stats by model
model_stats = df.groupby('model').agg({
'vqa_score': ['mean', 'std', 'min', 'max'],
'aesthetic_score': ['mean', 'std', 'min', 'max'],
'fidelity_score': ['mean', 'std', 'min', 'max'],
'generation_time': ['mean', 'std', 'min', 'max']
})
print("Overall Model Performance:")
print(model_stats)
# Stats by category and model
category_stats = df.groupby(['model', 'category']).agg({
'vqa_score': 'mean',
'aesthetic_score': 'mean',
'fidelity_score': 'mean',
'generation_time': 'mean'
}).reset_index()
print("\nPerformance by Category and Model:")
print(category_stats.to_string())
# Create a radar chart for category performance
categories = category_stats['category'].unique()
models = category_stats['model'].unique()
plt.figure(figsize=(10, 8))
angles = np.linspace(0, 2*np.pi, len(categories), endpoint=False).tolist()
angles += angles[:1] # Close the loop
ax = plt.subplot(111, polar=True)
for model in models:
model_data = category_stats[category_stats['model'] == model]
values = []
for category in categories:
cat_data = model_data[model_data['category'] == category]
if not cat_data.empty:
values.append(cat_data['fidelity_score'].values[0])
else:
values.append(0)
values += values[:1] # Close the loop
ax.plot(angles, values, linewidth=2, label=model)
ax.fill(angles, values, alpha=0.25)
ax.set_xticks(angles[:-1])
ax.set_xticklabels(categories)
ax.set_title('Fidelity Score by Category and Model')
ax.legend(loc='upper right')
plt.tight_layout()
plt.savefig('results/category_radar.png')
plt.close()
# Main analysis function
def run_analysis():
"""
Main function that runs the complete analysis pipeline:
1. Creates necessary directories
2. Generates all visualization plots
3. Prints summary statistics
4. Analyzes best and worst examples
All results are saved to the 'results/' directory.
"""
print("Starting analysis of evaluation results...")
# Create plots directory if it doesn't exist
Path("results").mkdir(exist_ok=True)
# Generate all plots
plot_model_comparison()
plot_category_performance()
plot_generation_time()
plot_complexity_performance()
# Print summary statistics
print_summary_stats()
# Analyze best and worst examples
success_df, failure_df = analyze_best_worst_examples()
print("\nAnalysis complete. Visualizations saved to 'results/' directory.")
if __name__ == "__main__":
run_analysis()