ved1beta
commited on
Commit
·
cf83b3d
1
Parent(s):
ef13ec4
hope
Browse files- app.py +26 -38
- image1.jpeg +0 -0
- image2.jpg +0 -0
- image3.jpeg +0 -0
app.py
CHANGED
@@ -1,33 +1,20 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
3 |
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
|
4 |
from PIL import Image
|
5 |
import torch
|
6 |
-
import
|
7 |
-
|
8 |
-
# Get token from environment variable
|
9 |
-
HF_TOKEN = os.getenv('HF_TOKEN')
|
10 |
|
11 |
# Load the model and processor
|
12 |
model_id = "google/paligemma-3b-mix-224"
|
|
|
13 |
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, token=HF_TOKEN).eval()
|
14 |
processor = AutoProcessor.from_pretrained(model_id, token=HF_TOKEN)
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
"English": "caption en",
|
19 |
-
"Spanish": "caption es",
|
20 |
-
"French": "caption fr",
|
21 |
-
"German": "caption de"
|
22 |
-
}
|
23 |
-
|
24 |
-
def generate_caption(image, language, max_tokens=100):
|
25 |
-
"""Generate image caption in specified language"""
|
26 |
if image is None:
|
27 |
return "Please upload an image."
|
28 |
|
29 |
-
prompt = LANGUAGES.get(language, "caption en")
|
30 |
-
|
31 |
# Preprocess inputs
|
32 |
model_inputs = processor(text=prompt, images=image, return_tensors="pt")
|
33 |
input_len = model_inputs["input_ids"].shape[-1]
|
@@ -40,46 +27,47 @@ def generate_caption(image, language, max_tokens=100):
|
|
40 |
|
41 |
return decoded
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
# Prepare example images
|
48 |
-
EXAMPLE_IMAGES =
|
49 |
-
load_example_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg"),
|
50 |
-
load_example_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/food.jpg"),
|
51 |
-
load_example_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/city.jpg")
|
52 |
-
]
|
53 |
|
54 |
# Create Gradio Interface
|
55 |
with gr.Blocks() as demo:
|
56 |
-
gr.Markdown("# PaliGemma Image
|
57 |
-
gr.Markdown("Upload an image and get a caption in your preferred language!")
|
58 |
|
59 |
with gr.Row():
|
60 |
with gr.Column():
|
61 |
-
input_image = gr.Image(type="pil", label="Upload Image")
|
62 |
-
|
63 |
-
|
64 |
-
value="English",
|
65 |
-
label="Caption Language"
|
66 |
-
)
|
67 |
-
submit_btn = gr.Button("Generate Caption")
|
68 |
|
69 |
with gr.Column():
|
70 |
-
output_text = gr.Textbox(label="
|
71 |
|
72 |
# Connect components
|
73 |
submit_btn.click(
|
74 |
fn=generate_caption,
|
75 |
-
inputs=[input_image,
|
76 |
outputs=output_text
|
77 |
)
|
78 |
|
79 |
# Add example images
|
80 |
gr.Examples(
|
81 |
-
examples=[[img,
|
82 |
-
inputs=[input_image,
|
83 |
fn=generate_caption,
|
84 |
outputs=output_text
|
85 |
)
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
+
import os
|
|
|
|
|
|
|
6 |
|
7 |
# Load the model and processor
|
8 |
model_id = "google/paligemma-3b-mix-224"
|
9 |
+
HF_TOKEN = os.getenv('HF_TOKEN')
|
10 |
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, token=HF_TOKEN).eval()
|
11 |
processor = AutoProcessor.from_pretrained(model_id, token=HF_TOKEN)
|
12 |
|
13 |
+
def generate_caption(image, prompt="What is in this image?", max_tokens=100):
|
14 |
+
"""Generate image description"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
if image is None:
|
16 |
return "Please upload an image."
|
17 |
|
|
|
|
|
18 |
# Preprocess inputs
|
19 |
model_inputs = processor(text=prompt, images=image, return_tensors="pt")
|
20 |
input_len = model_inputs["input_ids"].shape[-1]
|
|
|
27 |
|
28 |
return decoded
|
29 |
|
30 |
+
# Load local example images
|
31 |
+
def load_local_images():
|
32 |
+
"""Load images from the repository"""
|
33 |
+
image_files = ['image1.jpeg', 'image2.jpg', 'image3.jpeg']
|
34 |
+
local_images = []
|
35 |
+
for img_file in image_files:
|
36 |
+
try:
|
37 |
+
img_path = os.path.join('.', img_file)
|
38 |
+
if os.path.exists(img_path):
|
39 |
+
local_images.append(Image.open(img_path))
|
40 |
+
except Exception as e:
|
41 |
+
print(f"Could not load {img_file}: {e}")
|
42 |
+
return local_images
|
43 |
|
44 |
# Prepare example images
|
45 |
+
EXAMPLE_IMAGES = load_local_images()
|
|
|
|
|
|
|
|
|
46 |
|
47 |
# Create Gradio Interface
|
48 |
with gr.Blocks() as demo:
|
49 |
+
gr.Markdown("# PaliGemma Image Analysis")
|
|
|
50 |
|
51 |
with gr.Row():
|
52 |
with gr.Column():
|
53 |
+
input_image = gr.Image(type="pil", label="Upload or Select Image")
|
54 |
+
custom_prompt = gr.Textbox(label="Custom Prompt", value="What is in this image?")
|
55 |
+
submit_btn = gr.Button("Analyze Image")
|
|
|
|
|
|
|
|
|
56 |
|
57 |
with gr.Column():
|
58 |
+
output_text = gr.Textbox(label="Image Description")
|
59 |
|
60 |
# Connect components
|
61 |
submit_btn.click(
|
62 |
fn=generate_caption,
|
63 |
+
inputs=[input_image, custom_prompt],
|
64 |
outputs=output_text
|
65 |
)
|
66 |
|
67 |
# Add example images
|
68 |
gr.Examples(
|
69 |
+
examples=[[img, "What is in this image?"] for img in EXAMPLE_IMAGES],
|
70 |
+
inputs=[input_image, custom_prompt],
|
71 |
fn=generate_caption,
|
72 |
outputs=output_text
|
73 |
)
|
image1.jpeg
ADDED
![]() |
image2.jpg
ADDED
![]() |
image3.jpeg
ADDED
![]() |