IndiScan / README.md
Wendgan's picture
Upload README.md
fe16bda verified

A newer version of the Streamlit SDK is available: 1.49.1

Upgrade
metadata
title: IndiScan
emoji: πŸ”
colorFrom: green
colorTo: blue
sdk: streamlit
sdk_version: 1.31.0
app_file: app.py
pinned: false

Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference

IndiScan: Indian Product Health Analyzer πŸ”

IndiScan is a comprehensive health analysis tool that helps users make informed decisions about food and cosmetic products by analyzing ingredients, providing health scores, and comparing prices across Indian e-commerce platforms.

Features 🌟

  • Smart Product Analysis

    • Barcode scanning
    • Image-based ingredient extraction
    • Manual ingredient entry
    • Health score calculation (0-1000)
    • Ingredient risk assessment
    • Nutrition information analysis
  • Price Comparison

    • Real-time price tracking across:
      • Amazon India
      • Blinkit
      • Zepto
      • Swiggy Instamart
  • Admin Controls

    • Product database management
    • CSV import/export
    • 60-day auto-refresh system

Setup πŸ› οΈ

  1. Install dependencies:
pip install -r requirements.txt
  1. Run the application:
python app.py

The application will start both the backend API (port 8000) and the Streamlit frontend.

Usage πŸ“±

  1. Scan Products

    • Enter a barcode number
    • Upload a product image
    • Manually enter ingredients
  2. View Analysis

    • Health score and explanation
    • Ingredient breakdown
    • Risk categories
    • Nutrition information
    • Price comparison
  3. Admin Features

    • Login with admin credentials
    • Add/update product information
    • Export/import database
    • Monitor data freshness

Technology Stack πŸ’»

  • Backend: FastAPI
  • Frontend: Streamlit
  • Database: SQLite
  • Image Processing: EasyOCR
  • Data Analysis: Pandas, Plotly
  • Web Scraping: aiohttp, BeautifulSoup4

Contributing 🀝

Feel free to contribute to this project by:

  1. Forking the repository
  2. Creating a feature branch
  3. Committing your changes
  4. Opening a pull request

License πŸ“„

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments πŸ™

  • Inspired by the Yuka app
  • Uses OpenFoodFacts data
  • Built with ❀️ for Indian consumers