File size: 2,941 Bytes
a950115
 
93355f1
5ec57ad
43cfc3a
09dbf6d
 
 
 
5ec57ad
 
 
43cfc3a
a950115
 
 
 
43cfc3a
 
09dbf6d
a950115
43cfc3a
09dbf6d
 
93355f1
5ec57ad
 
 
 
09dbf6d
 
 
93355f1
 
 
cf636f6
93355f1
 
 
 
09dbf6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93355f1
 
 
09dbf6d
 
 
93355f1
 
 
09dbf6d
93355f1
 
 
8481c28
019b8b7
09dbf6d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import os
import torch
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import story_generator
from diffusers import DiffusionPipeline
import io
import base64
from PIL import Image

app = FastAPI()

# βœ… Set Hugging Face cache directory to /tmp (Fixes cache write errors)
os.environ["HF_HOME"] = "/tmp/huggingface"
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
os.environ["HF_HUB_CACHE"] = "/tmp/huggingface"

# βœ… Load Public Image Generation Model (No Token Needed)
IMAGE_MODEL = "stabilityai/sdxl-turbo"  # Fastest model for public access
pipeline = DiffusionPipeline.from_pretrained(
    IMAGE_MODEL,
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
).to("cuda" if torch.cuda.is_available() else "cpu")

# βœ… Define the input request format
class StoryRequest(BaseModel):
    theme: str
    reading_level: str

@app.post("/generate_story_questions_images")
def generate_story_questions_images(request: StoryRequest):
    """Generates a story, questions, and corresponding images."""
    try:
        print(f"🎭 Generating story for theme: {request.theme} and level: {request.reading_level}")

        # βœ… Generate the story and questions
        if not hasattr(story_generator, "generate_story_and_questions"):
            raise HTTPException(status_code=500, detail="Story generation function not found in story_generator.py")

        story_result = story_generator.generate_story_and_questions(request.theme, request.reading_level)
        story_text = story_result["story"]
        questions = story_result["questions"]

        # βœ… Split the story into sentences for image generation
        story_sentences = story_text.strip().split(". ")

        # βœ… Generate an image for each sentence
        images = []
        for sentence in story_sentences:
            if len(sentence) > 5:  # Avoid empty sentences
                print(f"πŸ–ΌοΈ Generating image for: {sentence}")
                image = pipeline(prompt=sentence, num_inference_steps=5).images[0]

                # Convert Image to Base64
                img_byte_arr = io.BytesIO()
                image.save(img_byte_arr, format="PNG")
                img_base64 = base64.b64encode(img_byte_arr.getvalue()).decode("utf-8")

                images.append({"sentence": sentence, "image": img_base64})

        # βœ… Return the full response
        return {
            "theme": request.theme,
            "reading_level": request.reading_level,
            "story": story_text,
            "questions": questions,
            "images": images,
        }

    except Exception as e:
        print(f"❌ Error generating story, questions, or images: {e}")
        raise HTTPException(status_code=500, detail=str(e))

# βœ… Welcome message at root
@app.get("/")
def home():
    return {"message": "πŸŽ‰ Welcome to the Story, Question & Image Generation API! Use /generate_story_questions_images"}