Spaces:
Sleeping
Sleeping
Update story_generator.py
Browse files- story_generator.py +177 -107
story_generator.py
CHANGED
@@ -1,119 +1,189 @@
|
|
1 |
-
import os
|
2 |
import torch
|
3 |
-
from
|
4 |
-
|
5 |
-
|
6 |
-
import story_generator
|
7 |
-
from diffusers import DiffusionPipeline
|
8 |
-
from PIL import Image
|
9 |
-
import io
|
10 |
-
import base64
|
11 |
-
import time
|
12 |
|
13 |
-
|
|
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
19 |
|
20 |
-
#
|
21 |
-
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
#
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
).to(device)
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
theme:
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
def
|
36 |
"""
|
37 |
-
|
38 |
-
|
39 |
-
If all retries fail, it falls back to sequential generation.
|
40 |
"""
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
return
|
46 |
-
|
47 |
-
if "index 16 is out of bounds" in str(e):
|
48 |
-
print(f"Encountered indexing error on attempt {attempt+1}: {e}")
|
49 |
-
time.sleep(delay) # wait before retrying
|
50 |
-
else:
|
51 |
-
raise e
|
52 |
-
# Fallback: Sequential generation
|
53 |
-
print("Falling back to sequential image generation...")
|
54 |
-
images = []
|
55 |
-
for i, prompt in enumerate(prompts):
|
56 |
-
try:
|
57 |
-
print(f"Generating image for prompt {i+1} sequentially...")
|
58 |
-
image = pipeline(prompt=prompt, num_inference_steps=15, height=768, width=768).images[0]
|
59 |
-
images.append(image)
|
60 |
-
except Exception as e:
|
61 |
-
print(f"Sequential generation failed for prompt {i+1}: {e}")
|
62 |
-
raise e
|
63 |
-
return images
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
return {"message": "🎉 Welcome to the Story, Question & Image API!"}
|
|
|
|
|
1 |
import torch
|
2 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
3 |
+
import random
|
4 |
+
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
# Set Hugging Face cache directory
|
7 |
+
CACHE_DIR = "/tmp/huggingface"
|
8 |
|
9 |
+
# ------------------------
|
10 |
+
# Load Story Generation Model
|
11 |
+
# ------------------------
|
12 |
+
STORY_MODEL_NAME = "abdalraheemdmd/story-api"
|
13 |
+
story_tokenizer = GPT2Tokenizer.from_pretrained(STORY_MODEL_NAME, cache_dir=CACHE_DIR)
|
14 |
+
story_model = GPT2LMHeadModel.from_pretrained(STORY_MODEL_NAME, cache_dir=CACHE_DIR)
|
15 |
|
16 |
+
# ------------------------
|
17 |
+
# Load Question Generation Model
|
18 |
+
# ------------------------
|
19 |
+
QUESTION_MODEL_NAME = "abdalraheemdmd/question-gene"
|
20 |
+
question_tokenizer = GPT2Tokenizer.from_pretrained(QUESTION_MODEL_NAME, cache_dir=CACHE_DIR)
|
21 |
+
question_model = GPT2LMHeadModel.from_pretrained(QUESTION_MODEL_NAME, cache_dir=CACHE_DIR)
|
22 |
|
23 |
+
# Ensure tokenizers have a pad token
|
24 |
+
if story_tokenizer.pad_token_id is None:
|
25 |
+
story_tokenizer.pad_token_id = story_tokenizer.eos_token_id
|
26 |
+
if question_tokenizer.pad_token_id is None:
|
27 |
+
question_tokenizer.pad_token_id = question_tokenizer.eos_token_id
|
|
|
28 |
|
29 |
+
def generate_story(theme, reading_level, max_new_tokens=400, temperature=0.7):
|
30 |
+
"""Generates a story based on the provided theme and reading level."""
|
31 |
+
prompt = f"A {reading_level} story about {theme}:"
|
32 |
+
input_ids = story_tokenizer(prompt, return_tensors="pt").input_ids
|
33 |
+
with torch.no_grad():
|
34 |
+
output = story_model.generate(
|
35 |
+
input_ids,
|
36 |
+
max_new_tokens=max_new_tokens,
|
37 |
+
temperature=temperature,
|
38 |
+
top_k=20,
|
39 |
+
top_p=0.7,
|
40 |
+
do_sample=True,
|
41 |
+
early_stopping=True,
|
42 |
+
pad_token_id=story_tokenizer.pad_token_id,
|
43 |
+
eos_token_id=story_tokenizer.eos_token_id,
|
44 |
+
attention_mask=input_ids.ne(story_tokenizer.pad_token_id)
|
45 |
+
)
|
46 |
+
return story_tokenizer.decode(output[0], skip_special_tokens=True)
|
47 |
|
48 |
+
def extract_protagonist(story):
|
49 |
"""
|
50 |
+
Attempts to extract the protagonist from the first sentence by searching for the pattern "named <Name>".
|
51 |
+
Returns the first matched name, if available.
|
|
|
52 |
"""
|
53 |
+
sentences = re.split(r'\.|\n', story)
|
54 |
+
if sentences:
|
55 |
+
m = re.search(r"named\s+([A-Z][a-z]+)", sentences[0])
|
56 |
+
if m:
|
57 |
+
return m.group(1)
|
58 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
def extract_characters(story):
|
61 |
+
"""
|
62 |
+
Extracts potential character names from the story using a frequency count on capitalized words.
|
63 |
+
Filters out common stopwords so that the most frequently mentioned name is likely the main character.
|
64 |
+
"""
|
65 |
+
words = re.findall(r'\b[A-Z][a-zA-Z]+\b', story)
|
66 |
+
stopwords = {"The", "A", "An", "And", "But", "Suddenly", "Quickly", "However", "Well",
|
67 |
+
"They", "I", "He", "She", "It", "When", "Where", "Dr", "Mr"}
|
68 |
+
filtered = [w for w in words if w not in stopwords and len(w) > 2]
|
69 |
+
if not filtered:
|
70 |
+
return []
|
71 |
+
freq = {}
|
72 |
+
for word in filtered:
|
73 |
+
freq[word] = freq.get(word, 0) + 1
|
74 |
+
sorted_chars = sorted(freq.items(), key=lambda x: x[1], reverse=True)
|
75 |
+
return [item[0] for item in sorted_chars]
|
76 |
+
|
77 |
+
def extract_themes(story):
|
78 |
+
"""Extracts themes from the story based on keyword matching."""
|
79 |
+
themes = []
|
80 |
+
story_lower = story.lower()
|
81 |
+
if "space" in story_lower:
|
82 |
+
themes.append("space")
|
83 |
+
if "adventure" in story_lower:
|
84 |
+
themes.append("adventure")
|
85 |
+
if "friend" in story_lower:
|
86 |
+
themes.append("friendship")
|
87 |
+
if "learn" in story_lower or "lesson" in story_lower:
|
88 |
+
themes.append("learning")
|
89 |
+
return themes
|
90 |
+
|
91 |
+
def extract_lesson(story):
|
92 |
+
"""
|
93 |
+
Attempts to extract a lesson or moral from the story by finding sentences
|
94 |
+
containing keywords like "learn" or "lesson". Returns the last matching sentence.
|
95 |
+
"""
|
96 |
+
sentences = re.split(r'\.|\n', story)
|
97 |
+
lesson_sentences = [
|
98 |
+
s.strip() for s in sentences
|
99 |
+
if ("learn" in s.lower() or "lesson" in s.lower()) and len(s.strip()) > 20
|
100 |
+
]
|
101 |
+
if lesson_sentences:
|
102 |
+
return lesson_sentences[-1]
|
103 |
+
else:
|
104 |
+
return "No explicit lesson found."
|
105 |
+
|
106 |
+
def format_question(question_prompt, correct_answer, distractors):
|
107 |
+
"""
|
108 |
+
Combines the correct answer with three distractors, shuffles the options,
|
109 |
+
and formats the question as a multiple-choice question.
|
110 |
+
"""
|
111 |
+
# Ensure exactly 3 distractors are available
|
112 |
+
if len(distractors) < 3:
|
113 |
+
default_distractors = ["Option X", "Option Y", "Option Z"]
|
114 |
+
while len(distractors) < 3:
|
115 |
+
distractors.append(default_distractors[len(distractors) % len(default_distractors)])
|
116 |
+
else:
|
117 |
+
distractors = random.sample(distractors, 3)
|
118 |
+
options = distractors + [correct_answer]
|
119 |
+
random.shuffle(options)
|
120 |
+
letters = ["A", "B", "C", "D"]
|
121 |
+
correct_letter = letters[options.index(correct_answer)]
|
122 |
+
options_text = "\n".join(f"{letters[i]}) {option}" for i, option in enumerate(options))
|
123 |
+
question_text = f"{question_prompt}\n{options_text}\nCorrect Answer: {correct_letter}"
|
124 |
+
return question_text
|
125 |
+
|
126 |
+
def dynamic_fallback_questions(story):
|
127 |
+
"""
|
128 |
+
Generates three multiple-choice questions based on dynamic story content.
|
129 |
+
Each question uses a randomly chosen template and shuffles its options.
|
130 |
+
"""
|
131 |
+
protagonist = extract_protagonist(story)
|
132 |
+
characters = extract_characters(story)
|
133 |
+
themes = extract_themes(story)
|
134 |
+
lesson = extract_lesson(story)
|
135 |
+
|
136 |
+
# --- Question 1: Theme ---
|
137 |
+
theme_templates = [
|
138 |
+
"What is the main theme of the story?",
|
139 |
+
"Which theme best represents the narrative?",
|
140 |
+
"What subject is central to the story?"
|
141 |
+
]
|
142 |
+
q1_prompt = random.choice(theme_templates)
|
143 |
+
correct_theme = " and ".join(themes) if themes else "learning"
|
144 |
+
q1_distractors = ["sports and competition", "cooking and baking", "weather and seasons", "technology and innovation"]
|
145 |
+
q1 = format_question(q1_prompt, correct_theme, q1_distractors)
|
146 |
+
|
147 |
+
# --- Question 2: Primary Character ---
|
148 |
+
character_templates = [
|
149 |
+
"Who is the primary character in the story?",
|
150 |
+
"Which character drives the main action in the narrative?",
|
151 |
+
"Who is the central figure in the story?"
|
152 |
+
]
|
153 |
+
q2_prompt = random.choice(character_templates)
|
154 |
+
if protagonist:
|
155 |
+
correct_character = protagonist
|
156 |
+
elif characters:
|
157 |
+
correct_character = characters[0]
|
158 |
+
else:
|
159 |
+
correct_character = "The main character"
|
160 |
+
q2_distractors = ["a mysterious stranger", "an unknown visitor", "a supporting character", "a sidekick"]
|
161 |
+
q2 = format_question(q2_prompt, correct_character, q2_distractors)
|
162 |
|
163 |
+
# --- Question 3: Lesson/Moral ---
|
164 |
+
lesson_templates = [
|
165 |
+
"What lesson did the characters learn by the end of the story?",
|
166 |
+
"What moral can be inferred from the narrative?",
|
167 |
+
"What is the key takeaway from the story?"
|
168 |
+
]
|
169 |
+
q3_prompt = random.choice(lesson_templates)
|
170 |
+
if lesson and lesson != "No explicit lesson found.":
|
171 |
+
correct_lesson = lesson # full sentence without truncation
|
172 |
+
else:
|
173 |
+
correct_lesson = "understanding and growth"
|
174 |
+
q3_distractors = ["always be silent", "never try new things", "do nothing", "ignore opportunities"]
|
175 |
+
q3 = format_question(q3_prompt, correct_lesson, q3_distractors)
|
176 |
+
|
177 |
+
return f"{q1}\n\n{q2}\n\n{q3}"
|
178 |
+
|
179 |
+
def generate_story_and_questions(theme, reading_level):
|
180 |
+
"""
|
181 |
+
Generates a story using the story generation model and then creates dynamic,
|
182 |
+
multiple-choice questions based on that story.
|
183 |
+
"""
|
184 |
+
story = generate_story(theme, reading_level)
|
185 |
+
questions = dynamic_fallback_questions(story)
|
186 |
+
return {"story": story, "questions": questions}
|
187 |
|
188 |
+
# Alias for backward compatibility
|
189 |
+
create_fallback_questions = dynamic_fallback_questions
|
|