Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -15,12 +15,14 @@ os.environ["HF_HOME"] = "/tmp/huggingface"
|
|
| 15 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
|
| 16 |
os.environ["HF_HUB_CACHE"] = "/tmp/huggingface"
|
| 17 |
|
| 18 |
-
# β
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
| 20 |
pipeline = DiffusionPipeline.from_pretrained(
|
| 21 |
-
IMAGE_MODEL,
|
| 22 |
-
|
| 23 |
-
).to("cuda" if torch.cuda.is_available() else "cpu")
|
| 24 |
|
| 25 |
# β
Define the input request format
|
| 26 |
class StoryRequest(BaseModel):
|
|
@@ -41,30 +43,21 @@ def generate_story_questions_images(request: StoryRequest):
|
|
| 41 |
story_text = story_result["story"]
|
| 42 |
questions = story_result["questions"]
|
| 43 |
|
| 44 |
-
# β
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
# β
Generate an image for each sentence
|
| 48 |
-
images = []
|
| 49 |
-
for sentence in story_sentences:
|
| 50 |
-
if len(sentence) > 5: # Avoid empty sentences
|
| 51 |
-
print(f"πΌοΈ Generating image for: {sentence}")
|
| 52 |
-
image = pipeline(prompt=sentence, num_inference_steps=5).images[0]
|
| 53 |
-
|
| 54 |
-
# Convert Image to Base64
|
| 55 |
-
img_byte_arr = io.BytesIO()
|
| 56 |
-
image.save(img_byte_arr, format="PNG")
|
| 57 |
-
img_base64 = base64.b64encode(img_byte_arr.getvalue()).decode("utf-8")
|
| 58 |
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
-
# β
Return the full response
|
| 62 |
return {
|
| 63 |
"theme": request.theme,
|
| 64 |
"reading_level": request.reading_level,
|
| 65 |
"story": story_text,
|
| 66 |
"questions": questions,
|
| 67 |
-
"
|
| 68 |
}
|
| 69 |
|
| 70 |
except Exception as e:
|
|
|
|
| 15 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
|
| 16 |
os.environ["HF_HUB_CACHE"] = "/tmp/huggingface"
|
| 17 |
|
| 18 |
+
# β
Enable GPU if available
|
| 19 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 20 |
+
|
| 21 |
+
# β
Load Public Image Generation Model
|
| 22 |
+
IMAGE_MODEL = "runwayml/stable-diffusion-v1-5" # β
Optimized for GPU
|
| 23 |
pipeline = DiffusionPipeline.from_pretrained(
|
| 24 |
+
IMAGE_MODEL, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 25 |
+
).to(device)
|
|
|
|
| 26 |
|
| 27 |
# β
Define the input request format
|
| 28 |
class StoryRequest(BaseModel):
|
|
|
|
| 43 |
story_text = story_result["story"]
|
| 44 |
questions = story_result["questions"]
|
| 45 |
|
| 46 |
+
# β
Generate an image for the story theme
|
| 47 |
+
print(f"πΌοΈ Generating image for: {request.theme}")
|
| 48 |
+
image = pipeline(prompt=request.theme, num_inference_steps=5).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
+
# Convert Image to Base64
|
| 51 |
+
img_byte_arr = io.BytesIO()
|
| 52 |
+
image.save(img_byte_arr, format="PNG")
|
| 53 |
+
img_base64 = base64.b64encode(img_byte_arr.getvalue()).decode("utf-8")
|
| 54 |
|
|
|
|
| 55 |
return {
|
| 56 |
"theme": request.theme,
|
| 57 |
"reading_level": request.reading_level,
|
| 58 |
"story": story_text,
|
| 59 |
"questions": questions,
|
| 60 |
+
"image": img_base64
|
| 61 |
}
|
| 62 |
|
| 63 |
except Exception as e:
|