File size: 1,968 Bytes
78e61dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import gradio as gr
from transformers import pipeline
# β
Sentiment Analysis
sentiment_pipeline = pipeline("sentiment-analysis")
def analyze_sentiment(text):
result = sentiment_pipeline(text)[0]
return f"{result['label']} ({result['score']:.2f})"
# β
Toxic Comment Detection (uses a toxicity model from Hugging Face)
toxic_pipeline = pipeline("text-classification", model="unitary/toxic-bert")
def detect_toxic(text):
result = toxic_pipeline(text)[0]
return f"{result['label']} ({result['score']:.2f})"
# β
Image Captioning Model (BLIP)
image_captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
def caption_image(image):
result = image_captioner(image)[0]['generated_text']
return result
# β
Speech-to-Text Model (whisper)
speech_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-tiny")
def speech_to_text(audio):
result = speech_pipeline(audio)
return result['text']
# π‘ Placeholder for Style Transfer (optional upgrade later)
def style_transfer(image, style):
return image # Replace with real model later
# β
Gradio App Setup
with gr.Blocks() as demo:
gr.Markdown("# π ML Playground Dashboard")
with gr.Tab("Sentiment Analyzer"):
gr.Interface(fn=analyze_sentiment, inputs=gr.Textbox(), outputs=gr.Textbox())
with gr.Tab("Toxic Comment Detector"):
gr.Interface(fn=detect_toxic, inputs=gr.Textbox(), outputs=gr.Textbox())
with gr.Tab("Image Caption Generator"):
gr.Interface(fn=caption_image, inputs=gr.Image(type="pil"), outputs=gr.Textbox())
with gr.Tab("Speech-to-Text"):
gr.Interface(fn=speech_to_text, inputs=gr.Audio(type="filepath"), outputs=gr.Textbox())
with gr.Tab("Art Style Transfer"):
gr.Interface(
fn=style_transfer,
inputs=[gr.Image(), gr.Dropdown(["Van Gogh", "Monet", "Picasso"])],
outputs=gr.Image()
)
demo.launch()
|