|
|
|
|
|
import numpy as np
|
|
|
import joblib
|
|
|
import pandas as pd
|
|
|
from flask import Flask, request, jsonify
|
|
|
|
|
|
|
|
|
rental_price_predictor_api = Flask("Airbnb Rental Price Predictor")
|
|
|
|
|
|
|
|
|
model = joblib.load("rental_price_prediction_model_v1_0.joblib")
|
|
|
|
|
|
|
|
|
@rental_price_predictor_api.get('/')
|
|
|
def home():
|
|
|
"""
|
|
|
This function handles GET requests to the root URL ('/') of the API.
|
|
|
It returns a simple welcome message.
|
|
|
"""
|
|
|
return "Welcome to the Airbnb Rental Price Prediction API!"
|
|
|
|
|
|
|
|
|
@rental_price_predictor_api.post('/v1/rental')
|
|
|
def predict_rental_price():
|
|
|
"""
|
|
|
This function handles POST requests to the '/v1/rental' endpoint.
|
|
|
It expects a JSON payload containing property details and returns
|
|
|
the predicted rental price as a JSON response.
|
|
|
"""
|
|
|
|
|
|
property_data = request.get_json()
|
|
|
|
|
|
|
|
|
sample = {
|
|
|
'room_type': property_data['room_type'],
|
|
|
'accommodates': property_data['accommodates'],
|
|
|
'bathrooms': property_data['bathrooms'],
|
|
|
'cancellation_policy': property_data['cancellation_policy'],
|
|
|
'cleaning_fee': property_data['cleaning_fee'],
|
|
|
'instant_bookable': property_data['instant_bookable'],
|
|
|
'review_scores_rating': property_data['review_scores_rating'],
|
|
|
'bedrooms': property_data['bedrooms'],
|
|
|
'beds': property_data['beds']
|
|
|
}
|
|
|
|
|
|
|
|
|
input_data = pd.DataFrame([sample])
|
|
|
|
|
|
|
|
|
predicted_log_price = model.predict(input_data)[0]
|
|
|
|
|
|
|
|
|
predicted_price = np.exp(predicted_log_price)
|
|
|
|
|
|
|
|
|
predicted_price = round(float(predicted_price), 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return jsonify({'Predicted Price (in dollars)': predicted_price})
|
|
|
|
|
|
|
|
|
|
|
|
@rental_price_predictor_api.post('/v1/rentalbatch')
|
|
|
def predict_rental_price_batch():
|
|
|
"""
|
|
|
This function handles POST requests to the '/v1/rentalbatch' endpoint.
|
|
|
It expects a CSV file containing property details for multiple properties
|
|
|
and returns the predicted rental prices as a dictionary in the JSON response.
|
|
|
"""
|
|
|
|
|
|
file = request.files['file']
|
|
|
|
|
|
|
|
|
input_data = pd.read_csv(file)
|
|
|
|
|
|
|
|
|
predicted_log_prices = model.predict(input_data).tolist()
|
|
|
|
|
|
|
|
|
predicted_prices = [round(float(np.exp(log_price)), 2) for log_price in predicted_log_prices]
|
|
|
|
|
|
|
|
|
property_ids = input_data['id'].tolist()
|
|
|
output_dict = dict(zip(property_ids, predicted_prices))
|
|
|
|
|
|
|
|
|
return output_dict
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
rental_price_predictor_api.run(debug=True)
|
|
|
|