Spaces:
Running
Running
File size: 9,843 Bytes
ad94382 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sentence_transformers import SentenceTransformer, util
import torch
import spacy
from transformers import pipeline, AutoModelForSeq2SeqLM, T5Tokenizer
import functools
# Model Caching
@functools.lru_cache(maxsize=1)
def load_sentence_model(name):
return SentenceTransformer(name)
@functools.lru_cache(maxsize=1)
def load_paraphraser():
tokenizer = T5Tokenizer.from_pretrained("ramsrigouthamg/t5_paraphraser")
model = AutoModelForSeq2SeqLM.from_pretrained("ramsrigouthamg/t5_paraphraser")
return pipeline("text2text-generation", model=model, tokenizer=tokenizer)
@functools.lru_cache(maxsize=1)
def load_sentiment():
return pipeline("sentiment-analysis")
# Load static models
model = load_sentence_model('all-MiniLM-L6-v2')
nlp = spacy.load("en_core_web_trf")
paraphraser = load_paraphraser()
sentiment = load_sentiment()
# Similarity and Visualization
def get_similarity(sentence1, sentence2, model_name, visualization_type):
model_local = load_sentence_model(model_name)
emb1 = model_local.encode(sentence1, convert_to_tensor=True)
emb2 = model_local.encode(sentence2, convert_to_tensor=True)
score = util.pytorch_cos_sim(emb1, emb2).item()
if visualization_type == "Bar Chart":
fig, ax = plt.subplots(figsize=(6, 4))
ax.bar(['Similarity'], [score], color='#4CAF50', edgecolor='black')
ax.set_ylim(0, 1)
ax.set_ylabel('Cosine Similarity')
ax.text(0, score + 0.03, f'{score:.2f}', ha='center', fontsize=12, fontweight='bold')
elif visualization_type == "Gauge":
fig, ax = plt.subplots(figsize=(5, 3), subplot_kw={'projection': 'polar'})
theta = np.linspace(0, np.pi, 100)
ax.plot(theta, [1] * 100, color='lightgray', linewidth=20, alpha=0.5)
ax.plot(theta[:int(score * 100)], [1] * int(score * 100), color='#2196F3', linewidth=20)
ax.set_ylim(0, 1.2)
ax.set_axis_off()
ax.text(0, 0, f'{score:.2f}', ha='center', va='center', fontsize=18, fontweight='bold')
else: # Heatmap
fig, ax = plt.subplots(figsize=(3, 3))
cax = ax.imshow([[score]], cmap='coolwarm', vmin=0, vmax=1)
fig.colorbar(cax, orientation='vertical')
ax.set_xticks([]); ax.set_yticks([])
ax.text(0, 0, f'{score:.2f}', ha='center', va='center', fontsize=18, color='black', fontweight='bold')
return score, f"Similarity Score: {score:.4f}", fig
# Text Analysis
def analyze_text(sentence1, sentence2):
s1_words, s2_words = len(sentence1.split()), len(sentence2.split())
s1_chars, s2_chars = len(sentence1), len(sentence2)
common = set(sentence1.lower().split()).intersection(set(sentence2.lower().split()))
overlap = len(common)/max(len(set(sentence1.lower().split())), len(set(sentence2.lower().split())))
return f"""
## Text Analysis
**Sentence 1:** {s1_words} words, {s1_chars} characters
**Sentence 2:** {s2_words} words, {s2_chars} characters
**Common Words:** {', '.join(common) if common else 'None'}
**Word Overlap Rate:** {overlap:.2f}
"""
# Named Entity Recognition
def extract_entities(text):
doc = nlp(text)
return [(ent.text, ent.label_) for ent in doc.ents]
# POS Tagging
def get_pos_tags(text):
doc = nlp(text)
return [(token.text, token.pos_) for token in doc]
def plot_pos_tags(text1, text2):
doc1 = nlp(text1)
doc2 = nlp(text2)
def count_pos(doc):
counts = {}
for token in doc:
counts[token.pos_] = counts.get(token.pos_, 0) + 1
return counts
pos_counts1 = count_pos(doc1)
pos_counts2 = count_pos(doc2)
# Combine counts for pie chart
combined_counts = {}
for tag in set(pos_counts1) | set(pos_counts2):
combined_counts[tag] = pos_counts1.get(tag, 0) + pos_counts2.get(tag, 0)
labels = list(combined_counts.keys())
sizes = list(combined_counts.values())
# Colors sampled to match your uploaded pie chart visually
custom_colors = [
'#000066', # Deep navy (N_SING)
'#CCCCFF', # Light lavender (P)
'#0066CC', # Blue (DELM)
'#FF9999', # Light red (ADJ_SIM)
'#660066', # Deep purple (CON)
'#CCFFFF', # Light cyan (N_PL)
'#FFFFCC', # Light yellow (V_PA)
'#990033', # Deep rose (PRO)
'#9999FF', # Light blue/purple (ETC)
'#9966FF', # Extra if needed
'#CC66CC' # Extra if needed
]
fig, ax = plt.subplots(figsize=(6, 6))
ax.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=140, colors=custom_colors[:len(sizes)])
ax.axis('equal') # Equal aspect ratio makes the pie circular.
ax.set_title("Combined POS Tag Distribution")
return fig
# Paraphrase Detection
def detect_paraphrase(score, threshold=0.8):
return "β
Likely Paraphrase" if score >= threshold else "β Not a Paraphrase"
# Paraphrase Generator
def generate_paraphrases(text):
try:
outputs = paraphraser(text, max_length=60, num_return_sequences=2, do_sample=True)
return [o['generated_text'] for o in outputs]
except:
return ["Paraphrasing failed or model not loaded."]
# Sentiment
def get_sentiment(text):
try:
return sentiment(text)[0]
except:
return {'label': 'Unknown', 'score': 0.0}
# Main processing
def process_text(sentence1, sentence2, model_name, visualization_type, perform_analysis, compare_dataset):
outputs = []
score, score_text, fig = get_similarity(sentence1, sentence2, model_name, visualization_type)
outputs.extend([score_text, fig])
analysis = analyze_text(sentence1, sentence2) if perform_analysis else ""
outputs.append(analysis)
paraphrase_result = detect_paraphrase(score)
outputs.append(paraphrase_result)
ner1 = extract_entities(sentence1)
ner2 = extract_entities(sentence2)
ner_display = f"""
## Named Entities
**Sentence 1:** {', '.join([f'{e[0]} ({e[1]})' for e in ner1]) if ner1 else 'None'}
**Sentence 2:** {', '.join([f'{e[0]} ({e[1]})' for e in ner2]) if ner2 else 'None'}
"""
outputs.append(ner_display)
s1_sentiment = get_sentiment(sentence1)
s2_sentiment = get_sentiment(sentence2)
senti_display = f"""
## Sentiment Analysis
**Sentence 1:** {s1_sentiment['label']} (score: {s1_sentiment['score']:.2f})
**Sentence 2:** {s2_sentiment['label']} (score: {s2_sentiment['score']:.2f})
"""
outputs.append(senti_display)
para1 = generate_paraphrases(sentence1)
para2 = generate_paraphrases(sentence2)
para_text = f"""
## Paraphrase Suggestions
**Sentence 1:**
- {para1[0]}
- {para1[1]}
**Sentence 2:**
- {para2[0]}
- {para2[1]}
"""
outputs.append(para_text)
# POS Tagging
pos1 = get_pos_tags(sentence1)
pos2 = get_pos_tags(sentence2)
pos_text = f"""
## Part-of-Speech (POS) Tags
**Sentence 1:**
{', '.join([f"{word} ({pos})" for word, pos in pos1])}
**Sentence 2:**
{', '.join([f"{word} ({pos})" for word, pos in pos2])}
"""
outputs.append(pos_text)
outputs.append(plot_pos_tags(sentence1, sentence2))
outputs.append("β
Your input has been submitted! Please check the π Results tab.")
return outputs
# Models
models = [
'all-MiniLM-L6-v2',
'paraphrase-multilingual-MiniLM-L12-v2',
'paraphrase-MiniLM-L3-v2',
'distilbert-base-nli-mean-tokens'
]
# Gradio UI
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# π§ͺ SEMA: Semantic Evaluation & Matching Analyzer")
gr.Markdown("Explore sentence meaning, similarity, and more.")
with gr.Tabs():
with gr.Tab("π Input"):
sentence1 = gr.Textbox(label="Sentence 1", lines=4)
sentence2 = gr.Textbox(label="Sentence 2", lines=4)
model_name = gr.Dropdown(choices=models, value=models[0], label="Model")
visualization_type = gr.Radio(["Bar Chart", "Gauge", "Heatmap"], value="Gauge", label="Visualization")
perform_analysis = gr.Checkbox(label="Extra Text Analysis", value=True)
compare_dataset = gr.Checkbox(label="Compare with Dataset", value=False)
submit_btn = gr.Button("Run Analysis")
status_msg = gr.Textbox(label="Status", interactive=False)
with gr.Tab("π Results"):
sim_result = gr.Textbox(label="Similarity Score", interactive=False)
vis_output = gr.Plot(label="Visualization")
para_result = gr.Textbox(label="Paraphrase Detection", interactive=False)
with gr.Tab("π¬ Deep Insights"):
with gr.Accordion("π Text Statistics", open=True):
stats_output = gr.Markdown()
with gr.Accordion("π§ Named Entity Recognition", open=False):
ner_output = gr.Markdown()
with gr.Accordion("π¬ Sentiment Analysis", open=False):
sentiment_output = gr.Markdown()
with gr.Accordion("π Paraphrase Suggestions", open=False):
para_output = gr.Markdown()
with gr.Accordion("π§Ύ POS Tagging", open=False):
pos_output = gr.Markdown()
pos_plot_output = gr.Plot()
gr.Examples([
["The sky is blue.", "The sky has a beautiful blue color."],
["What is your name?", "Can you tell me your name?"]
], inputs=[sentence1, sentence2])
submit_btn.click(
fn=process_text,
inputs=[sentence1, sentence2, model_name, visualization_type, perform_analysis, compare_dataset],
outputs=[
sim_result,
vis_output,
stats_output,
para_result,
ner_output,
sentiment_output,
para_output,
pos_output,
pos_plot_output,
status_msg
]
)
demo.launch()
|