File size: 9,843 Bytes
ad94382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sentence_transformers import SentenceTransformer, util
import torch
import spacy
from transformers import pipeline, AutoModelForSeq2SeqLM, T5Tokenizer
import functools

# Model Caching
@functools.lru_cache(maxsize=1)
def load_sentence_model(name):
    return SentenceTransformer(name)

@functools.lru_cache(maxsize=1)
def load_paraphraser():
    tokenizer = T5Tokenizer.from_pretrained("ramsrigouthamg/t5_paraphraser")
    model = AutoModelForSeq2SeqLM.from_pretrained("ramsrigouthamg/t5_paraphraser")
    return pipeline("text2text-generation", model=model, tokenizer=tokenizer)

@functools.lru_cache(maxsize=1)
def load_sentiment():
    return pipeline("sentiment-analysis")

# Load static models
model = load_sentence_model('all-MiniLM-L6-v2')
nlp = spacy.load("en_core_web_trf")
paraphraser = load_paraphraser()
sentiment = load_sentiment()

# Similarity and Visualization
def get_similarity(sentence1, sentence2, model_name, visualization_type):
    model_local = load_sentence_model(model_name)
    emb1 = model_local.encode(sentence1, convert_to_tensor=True)
    emb2 = model_local.encode(sentence2, convert_to_tensor=True)
    score = util.pytorch_cos_sim(emb1, emb2).item()

    if visualization_type == "Bar Chart":
        fig, ax = plt.subplots(figsize=(6, 4))
        ax.bar(['Similarity'], [score], color='#4CAF50', edgecolor='black')
        ax.set_ylim(0, 1)
        ax.set_ylabel('Cosine Similarity')
        ax.text(0, score + 0.03, f'{score:.2f}', ha='center', fontsize=12, fontweight='bold')

    elif visualization_type == "Gauge":
        fig, ax = plt.subplots(figsize=(5, 3), subplot_kw={'projection': 'polar'})
        theta = np.linspace(0, np.pi, 100)
        ax.plot(theta, [1] * 100, color='lightgray', linewidth=20, alpha=0.5)
        ax.plot(theta[:int(score * 100)], [1] * int(score * 100), color='#2196F3', linewidth=20)
        ax.set_ylim(0, 1.2)
        ax.set_axis_off()
        ax.text(0, 0, f'{score:.2f}', ha='center', va='center', fontsize=18, fontweight='bold')

    else:  # Heatmap
        fig, ax = plt.subplots(figsize=(3, 3))
        cax = ax.imshow([[score]], cmap='coolwarm', vmin=0, vmax=1)
        fig.colorbar(cax, orientation='vertical')
        ax.set_xticks([]); ax.set_yticks([])
        ax.text(0, 0, f'{score:.2f}', ha='center', va='center', fontsize=18, color='black', fontweight='bold')

    return score, f"Similarity Score: {score:.4f}", fig

# Text Analysis
def analyze_text(sentence1, sentence2):
    s1_words, s2_words = len(sentence1.split()), len(sentence2.split())
    s1_chars, s2_chars = len(sentence1), len(sentence2)
    common = set(sentence1.lower().split()).intersection(set(sentence2.lower().split()))
    overlap = len(common)/max(len(set(sentence1.lower().split())), len(set(sentence2.lower().split())))
    return f"""
## Text Analysis
**Sentence 1:** {s1_words} words, {s1_chars} characters  
**Sentence 2:** {s2_words} words, {s2_chars} characters  
**Common Words:** {', '.join(common) if common else 'None'}  
**Word Overlap Rate:** {overlap:.2f}
"""

# Named Entity Recognition
def extract_entities(text):
    doc = nlp(text)
    return [(ent.text, ent.label_) for ent in doc.ents]

# POS Tagging
def get_pos_tags(text):
    doc = nlp(text)
    return [(token.text, token.pos_) for token in doc]

def plot_pos_tags(text1, text2):
    doc1 = nlp(text1)
    doc2 = nlp(text2)

    def count_pos(doc):
        counts = {}
        for token in doc:
            counts[token.pos_] = counts.get(token.pos_, 0) + 1
        return counts

    pos_counts1 = count_pos(doc1)
    pos_counts2 = count_pos(doc2)

    # Combine counts for pie chart
    combined_counts = {}
    for tag in set(pos_counts1) | set(pos_counts2):
        combined_counts[tag] = pos_counts1.get(tag, 0) + pos_counts2.get(tag, 0)

    labels = list(combined_counts.keys())
    sizes = list(combined_counts.values())

    # Colors sampled to match your uploaded pie chart visually
    custom_colors = [
        '#000066',  # Deep navy (N_SING)
        '#CCCCFF',  # Light lavender (P)
        '#0066CC',  # Blue (DELM)
        '#FF9999',  # Light red (ADJ_SIM)
        '#660066',  # Deep purple (CON)
        '#CCFFFF',  # Light cyan (N_PL)
        '#FFFFCC',  # Light yellow (V_PA)
        '#990033',  # Deep rose (PRO)
        '#9999FF',  # Light blue/purple (ETC)
        '#9966FF',  # Extra if needed
        '#CC66CC'   # Extra if needed
    ]

    fig, ax = plt.subplots(figsize=(6, 6))
    ax.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=140, colors=custom_colors[:len(sizes)])
    ax.axis('equal')  # Equal aspect ratio makes the pie circular.
    ax.set_title("Combined POS Tag Distribution")

    return fig



# Paraphrase Detection
def detect_paraphrase(score, threshold=0.8):
    return "βœ… Likely Paraphrase" if score >= threshold else "❌ Not a Paraphrase"

# Paraphrase Generator
def generate_paraphrases(text):
    try:
        outputs = paraphraser(text, max_length=60, num_return_sequences=2, do_sample=True)
        return [o['generated_text'] for o in outputs]
    except:
        return ["Paraphrasing failed or model not loaded."]

# Sentiment
def get_sentiment(text):
    try:
        return sentiment(text)[0]
    except:
        return {'label': 'Unknown', 'score': 0.0}

# Main processing
def process_text(sentence1, sentence2, model_name, visualization_type, perform_analysis, compare_dataset):
    outputs = []

    score, score_text, fig = get_similarity(sentence1, sentence2, model_name, visualization_type)
    outputs.extend([score_text, fig])

    analysis = analyze_text(sentence1, sentence2) if perform_analysis else ""
    outputs.append(analysis)

    paraphrase_result = detect_paraphrase(score)
    outputs.append(paraphrase_result)

    ner1 = extract_entities(sentence1)
    ner2 = extract_entities(sentence2)
    ner_display = f"""
## Named Entities

**Sentence 1:** {', '.join([f'{e[0]} ({e[1]})' for e in ner1]) if ner1 else 'None'}  
**Sentence 2:** {', '.join([f'{e[0]} ({e[1]})' for e in ner2]) if ner2 else 'None'}  
"""
    outputs.append(ner_display)

    s1_sentiment = get_sentiment(sentence1)
    s2_sentiment = get_sentiment(sentence2)
    senti_display = f"""
## Sentiment Analysis

**Sentence 1:** {s1_sentiment['label']} (score: {s1_sentiment['score']:.2f})  
**Sentence 2:** {s2_sentiment['label']} (score: {s2_sentiment['score']:.2f})  
"""
    outputs.append(senti_display)

    para1 = generate_paraphrases(sentence1)
    para2 = generate_paraphrases(sentence2)
    para_text = f"""
## Paraphrase Suggestions

**Sentence 1:**  
- {para1[0]}  
- {para1[1]}

**Sentence 2:**  
- {para2[0]}  
- {para2[1]}
"""
    outputs.append(para_text)

    # POS Tagging
    pos1 = get_pos_tags(sentence1)
    pos2 = get_pos_tags(sentence2)
    pos_text = f"""
## Part-of-Speech (POS) Tags

**Sentence 1:**  
{', '.join([f"{word} ({pos})" for word, pos in pos1])}

**Sentence 2:**  
{', '.join([f"{word} ({pos})" for word, pos in pos2])}
"""
    outputs.append(pos_text)
    outputs.append(plot_pos_tags(sentence1, sentence2))

    outputs.append("βœ… Your input has been submitted! Please check the πŸ“Š Results tab.")
    return outputs

# Models
models = [
    'all-MiniLM-L6-v2',
    'paraphrase-multilingual-MiniLM-L12-v2',
    'paraphrase-MiniLM-L3-v2',
    'distilbert-base-nli-mean-tokens'
]

# Gradio UI
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# πŸ§ͺ SEMA: Semantic Evaluation & Matching Analyzer")
    gr.Markdown("Explore sentence meaning, similarity, and more.")

    with gr.Tabs():
        with gr.Tab("πŸ“ Input"):
            sentence1 = gr.Textbox(label="Sentence 1", lines=4)
            sentence2 = gr.Textbox(label="Sentence 2", lines=4)
            model_name = gr.Dropdown(choices=models, value=models[0], label="Model")
            visualization_type = gr.Radio(["Bar Chart", "Gauge", "Heatmap"], value="Gauge", label="Visualization")
            perform_analysis = gr.Checkbox(label="Extra Text Analysis", value=True)
            compare_dataset = gr.Checkbox(label="Compare with Dataset", value=False)
            submit_btn = gr.Button("Run Analysis")
            status_msg = gr.Textbox(label="Status", interactive=False)

        with gr.Tab("πŸ“Š Results"):
            sim_result = gr.Textbox(label="Similarity Score", interactive=False)
            vis_output = gr.Plot(label="Visualization")
            para_result = gr.Textbox(label="Paraphrase Detection", interactive=False)

        with gr.Tab("πŸ”¬ Deep Insights"):
            with gr.Accordion("πŸ“š Text Statistics", open=True):
                stats_output = gr.Markdown()
            with gr.Accordion("🧠 Named Entity Recognition", open=False):
                ner_output = gr.Markdown()
            with gr.Accordion("πŸ’¬ Sentiment Analysis", open=False):
                sentiment_output = gr.Markdown()
            with gr.Accordion("πŸŒ€ Paraphrase Suggestions", open=False):
                para_output = gr.Markdown()
            with gr.Accordion("🧾 POS Tagging", open=False):
                pos_output = gr.Markdown()
                pos_plot_output = gr.Plot()

    gr.Examples([
        ["The sky is blue.", "The sky has a beautiful blue color."],
        ["What is your name?", "Can you tell me your name?"]
    ], inputs=[sentence1, sentence2])

    submit_btn.click(
        fn=process_text,
        inputs=[sentence1, sentence2, model_name, visualization_type, perform_analysis, compare_dataset],
        outputs=[
            sim_result,
            vis_output,
            stats_output,
            para_result,
            ner_output,
            sentiment_output,
            para_output,
            pos_output,
            pos_plot_output,
            status_msg
        ]
    )

demo.launch()