test_1 / app.py
aeresd's picture
Update app.py
b64c976 verified
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import torch
import streamlit as st
# ✅ Step 1: Emoji 翻译模型(你自己训练的模型)
emoji_model_id = "jenniferhk008/roberta-hfl-emoji-aug3epoch"
emoji_tokenizer = AutoTokenizer.from_pretrained(emoji_model_id, trust_remote_code=True)
emoji_model = AutoModelForCausalLM.from_pretrained(
emoji_model_id,
trust_remote_code=True,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
).to("cuda" if torch.cuda.is_available() else "cpu")
emoji_model.eval()
# ✅ Step 2: 可选择的冒犯性文本识别模型
model_options = {
"Toxic-BERT": "unitary/toxic-bert",
"Roberta Offensive": "cardiffnlp/twitter-roberta-base-offensive",
"BERT Emotion": "bhadresh-savani/bert-base-go-emotion"
}
# ✅ 页面配置
st.set_page_config(page_title="Emoji Offensive Text Detector", page_icon="🚨", layout="wide")
# ✅ 页面标题
st.title("🧠 Emoji-based Offensive Language Classifier")
st.markdown("""
This application translates emojis in a sentence and classifies whether the final sentence is offensive or not using two AI models.
- The **first model** translates emoji or symbolic phrases into standard Chinese text.
- The **second model** performs offensive language detection.
""")
# Streamlit 侧边栏模型选择
selected_model = st.sidebar.selectbox("Choose classification model", list(model_options.keys()))
selected_model_id = model_options[selected_model]
classifier = pipeline("text-classification", model=selected_model_id, device=0 if torch.cuda.is_available() else -1)
# ✅ 输入区域
st.markdown("### ✍️ Input your sentence:")
default_text = "你是🐷"
text = st.text_area("Enter sentence with emojis:", value=default_text, height=150)
# ✅ 主逻辑封装函数
def classify_emoji_text(text: str):
prompt = f"输入:{text}\n输出:"
input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
with torch.no_grad():
output_ids = emoji_model.generate(**input_ids, max_new_tokens=64, do_sample=False)
decoded = emoji_tokenizer.decode(output_ids[0], skip_special_tokens=True)
translated_text = decoded.split("输出:")[-1].strip() if "输出:" in decoded else decoded.strip()
result = classifier(translated_text)[0]
label = result["label"]
score = result["score"]
return translated_text, label, score
# ✅ 触发按钮
if st.button("🚦 Analyze"):
with st.spinner("🔍 Processing..."):
try:
translated, label, score = classify_emoji_text(text)
st.markdown("### 🔄 Translated sentence:")
st.code(translated, language="text")
st.markdown(f"### 🎯 Prediction: `{label}`")
st.markdown(f"### 📊 Confidence Score: `{score:.2%}`")
except Exception as e:
st.error(f"❌ An error occurred during processing:\n\n{e}")
else:
st.info("👈 Please input text and click the button to classify.")