Update app.py
#226
by
lyndalynda
- opened
app.py
CHANGED
|
@@ -1,23 +1,382 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
| 4 |
-
import inspect
|
| 5 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 10 |
|
| 11 |
-
# --- Basic Agent Definition ---
|
| 12 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
| 13 |
class BasicAgent:
|
| 14 |
def __init__(self):
|
| 15 |
-
print("
|
|
|
|
|
|
|
| 16 |
def __call__(self, question: str) -> str:
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
| 23 |
"""
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
|
|
|
| 4 |
import pandas as pd
|
| 5 |
+
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, tool
|
| 6 |
+
import re
|
| 7 |
+
import json
|
| 8 |
+
import math
|
| 9 |
+
import tempfile
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
from urllib.parse import urlparse, parse_qs
|
| 12 |
+
import yt_dlp
|
| 13 |
+
from PIL import Image
|
| 14 |
+
import pytesseract
|
| 15 |
|
| 16 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 17 |
+
SPACE_ID = os.getenv("SPACE_ID")
|
| 18 |
+
SPACE_HOST = os.getenv("SPACE_HOST")
|
| 19 |
+
# --- OUTILS CRITIQUES POUR GAIA ---
|
| 20 |
+
@tool
|
| 21 |
+
def web_browser(url: str) -> str:
|
| 22 |
+
"""
|
| 23 |
+
Fetches content from a web URL.
|
| 24 |
+
|
| 25 |
+
Args:
|
| 26 |
+
url: The URL to fetch content from.
|
| 27 |
+
|
| 28 |
+
Returns:
|
| 29 |
+
Text content from the webpage.
|
| 30 |
+
"""
|
| 31 |
+
try:
|
| 32 |
+
headers = {
|
| 33 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
|
| 34 |
+
}
|
| 35 |
+
response = requests.get(url, headers=headers, timeout=10)
|
| 36 |
+
response.raise_for_status()
|
| 37 |
+
|
| 38 |
+
# Simple text extraction (you might want to use BeautifulSoup for better parsing)
|
| 39 |
+
content = response.text
|
| 40 |
+
# Basic cleaning
|
| 41 |
+
content = re.sub(r'<[^>]+>', ' ', content) # Remove HTML tags
|
| 42 |
+
content = re.sub(r'\s+', ' ', content).strip() # Clean whitespace
|
| 43 |
+
|
| 44 |
+
return content[:2000] + "..." if len(content) > 2000 else content
|
| 45 |
+
|
| 46 |
+
except Exception as e:
|
| 47 |
+
return f"Error accessing URL: {str(e)}"
|
| 48 |
+
|
| 49 |
+
@tool
|
| 50 |
+
def youtube_transcript_extractor(url: str) -> str:
|
| 51 |
+
"""
|
| 52 |
+
Extracts transcript or information from YouTube videos.
|
| 53 |
+
|
| 54 |
+
Args:
|
| 55 |
+
url: YouTube URL.
|
| 56 |
+
|
| 57 |
+
Returns:
|
| 58 |
+
Video information and transcript if available.
|
| 59 |
+
"""
|
| 60 |
+
try:
|
| 61 |
+
# Extract video ID from URL
|
| 62 |
+
if "youtube.com/watch" in url:
|
| 63 |
+
video_id = parse_qs(urlparse(url).query).get('v', [None])[0]
|
| 64 |
+
elif "youtu.be/" in url:
|
| 65 |
+
video_id = urlparse(url).path[1:]
|
| 66 |
+
else:
|
| 67 |
+
return "Invalid YouTube URL format"
|
| 68 |
+
|
| 69 |
+
if not video_id:
|
| 70 |
+
return "Could not extract video ID from URL"
|
| 71 |
+
|
| 72 |
+
# Use youtube-dl to get video info
|
| 73 |
+
ydl_opts = {
|
| 74 |
+
'quiet': True,
|
| 75 |
+
'no_warnings': True,
|
| 76 |
+
'writesubtitles': True,
|
| 77 |
+
'writeautomaticsub': True,
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 81 |
+
info = ydl.extract_info(f"https://www.youtube.com/watch?v={video_id}", download=False)
|
| 82 |
+
|
| 83 |
+
result = f"Title: {info.get('title', 'N/A')}\n"
|
| 84 |
+
result += f"Description: {info.get('description', 'N/A')[:500]}...\n"
|
| 85 |
+
result += f"Duration: {info.get('duration', 'N/A')} seconds\n"
|
| 86 |
+
result += f"View count: {info.get('view_count', 'N/A')}\n"
|
| 87 |
+
|
| 88 |
+
# Try to get subtitles/transcript
|
| 89 |
+
if 'subtitles' in info and info['subtitles']:
|
| 90 |
+
result += "\n--- Transcript Available ---\n"
|
| 91 |
+
# This is a simplified approach - you'd need more complex logic for full transcript
|
| 92 |
+
|
| 93 |
+
return result
|
| 94 |
+
|
| 95 |
+
except Exception as e:
|
| 96 |
+
return f"Error extracting YouTube content: {str(e)}"
|
| 97 |
+
|
| 98 |
+
@tool
|
| 99 |
+
def image_ocr_analyzer(image_path: str) -> str:
|
| 100 |
+
"""
|
| 101 |
+
Performs OCR on images to extract text.
|
| 102 |
+
|
| 103 |
+
Args:
|
| 104 |
+
image_path: Path to the image file.
|
| 105 |
+
|
| 106 |
+
Returns:
|
| 107 |
+
Extracted text from the image.
|
| 108 |
+
"""
|
| 109 |
+
try:
|
| 110 |
+
# Open image with PIL
|
| 111 |
+
image = Image.open(image_path)
|
| 112 |
+
|
| 113 |
+
# Perform OCR
|
| 114 |
+
extracted_text = pytesseract.image_to_string(image)
|
| 115 |
+
|
| 116 |
+
if not extracted_text.strip():
|
| 117 |
+
return "No text found in the image"
|
| 118 |
+
|
| 119 |
+
return f"Extracted text:\n{extracted_text.strip()}"
|
| 120 |
+
|
| 121 |
+
except Exception as e:
|
| 122 |
+
return f"Error performing OCR: {str(e)}"
|
| 123 |
+
|
| 124 |
+
@tool
|
| 125 |
+
def pdf_text_extractor(file_path: str) -> str:
|
| 126 |
+
"""
|
| 127 |
+
Extracts text from PDF files.
|
| 128 |
+
|
| 129 |
+
Args:
|
| 130 |
+
file_path: Path to the PDF file.
|
| 131 |
+
|
| 132 |
+
Returns:
|
| 133 |
+
Extracted text from PDF.
|
| 134 |
+
"""
|
| 135 |
+
try:
|
| 136 |
+
import PyPDF2
|
| 137 |
+
|
| 138 |
+
with open(file_path, 'rb') as file:
|
| 139 |
+
pdf_reader = PyPDF2.PdfReader(file)
|
| 140 |
+
text = ""
|
| 141 |
+
|
| 142 |
+
for page_num in range(len(pdf_reader.pages)):
|
| 143 |
+
page = pdf_reader.pages[page_num]
|
| 144 |
+
text += page.extract_text() + "\n"
|
| 145 |
+
|
| 146 |
+
return text[:3000] + "..." if len(text) > 3000 else text
|
| 147 |
+
|
| 148 |
+
except Exception as e:
|
| 149 |
+
return f"Error extracting PDF text: {str(e)}"
|
| 150 |
+
|
| 151 |
+
@tool
|
| 152 |
+
def veterinary_document_analyzer(text: str) -> str:
|
| 153 |
+
"""
|
| 154 |
+
Analyzes veterinary documents to extract specific information like names.
|
| 155 |
+
|
| 156 |
+
Args:
|
| 157 |
+
text: Document text to analyze.
|
| 158 |
+
|
| 159 |
+
Returns:
|
| 160 |
+
Extracted veterinary information.
|
| 161 |
+
"""
|
| 162 |
+
try:
|
| 163 |
+
# Look for veterinarian names and surnames
|
| 164 |
+
vet_patterns = [
|
| 165 |
+
r"Dr\.?\s+([A-Z][a-z]+)\s+([A-Z][a-z]+)", # Dr. First Last
|
| 166 |
+
r"Doctor\s+([A-Z][a-z]+)\s+([A-Z][a-z]+)", # Doctor First Last
|
| 167 |
+
r"veterinarian\s+([A-Z][a-z]+)\s+([A-Z][a-z]+)", # veterinarian First Last
|
| 168 |
+
r"DVM\s+([A-Z][a-z]+)\s+([A-Z][a-z]+)", # DVM First Last
|
| 169 |
+
]
|
| 170 |
+
|
| 171 |
+
found_vets = []
|
| 172 |
+
for pattern in vet_patterns:
|
| 173 |
+
matches = re.findall(pattern, text, re.IGNORECASE)
|
| 174 |
+
for match in matches:
|
| 175 |
+
full_name = f"{match[0]} {match[1]}"
|
| 176 |
+
if full_name not in found_vets:
|
| 177 |
+
found_vets.append(full_name)
|
| 178 |
+
|
| 179 |
+
if found_vets:
|
| 180 |
+
return f"Found veterinarian(s): {', '.join(found_vets)}"
|
| 181 |
+
else:
|
| 182 |
+
return "No veterinarian names found in the document"
|
| 183 |
+
|
| 184 |
+
except Exception as e:
|
| 185 |
+
return f"Error analyzing veterinary document: {str(e)}"
|
| 186 |
+
|
| 187 |
+
# --- Outils existants améliorés ---
|
| 188 |
+
@tool
|
| 189 |
+
def analyze_excel_file(file_path: str, analysis_type: str = "general") -> str:
|
| 190 |
+
"""
|
| 191 |
+
Analyzes Excel files with multiple analysis types.
|
| 192 |
+
"""
|
| 193 |
+
try:
|
| 194 |
+
df = pd.read_excel(file_path)
|
| 195 |
+
|
| 196 |
+
if analysis_type == "general":
|
| 197 |
+
return f"Excel file contains {len(df)} rows and {len(df.columns)} columns. Columns: {list(df.columns)}"
|
| 198 |
+
|
| 199 |
+
elif analysis_type == "food_sales":
|
| 200 |
+
if 'category' in df.columns and 'price' in df.columns and 'quantity' in df.columns:
|
| 201 |
+
food_df = df[df['category'].str.lower() == 'food']
|
| 202 |
+
total_sales = (food_df['price'] * food_df['quantity']).sum()
|
| 203 |
+
return f"Total food sales: ${total_sales:.2f}"
|
| 204 |
+
else:
|
| 205 |
+
return "Required columns (category, price, quantity) not found"
|
| 206 |
+
|
| 207 |
+
elif analysis_type == "summary":
|
| 208 |
+
summary = df.describe(include='all').to_string()
|
| 209 |
+
return f"Data summary:\n{summary}"
|
| 210 |
+
|
| 211 |
+
elif analysis_type == "categories":
|
| 212 |
+
if 'category' in df.columns:
|
| 213 |
+
categories = df['category'].value_counts()
|
| 214 |
+
return f"Categories breakdown:\n{categories.to_string()}"
|
| 215 |
+
else:
|
| 216 |
+
return "No category column found"
|
| 217 |
+
|
| 218 |
+
return "Unknown analysis type"
|
| 219 |
+
|
| 220 |
+
except Exception as e:
|
| 221 |
+
return f"Error analyzing Excel file: {str(e)}"
|
| 222 |
+
|
| 223 |
+
@tool
|
| 224 |
+
def advanced_calculator(expression: str) -> str:
|
| 225 |
+
"""
|
| 226 |
+
Evaluates mathematical expressions safely, including advanced functions.
|
| 227 |
+
"""
|
| 228 |
+
try:
|
| 229 |
+
expression = expression.replace('^', '**')
|
| 230 |
+
allowed_functions = {
|
| 231 |
+
'abs': abs, 'round': round, 'min': min, 'max': max,
|
| 232 |
+
'sum': sum, 'len': len,
|
| 233 |
+
'sqrt': math.sqrt, 'pow': math.pow, 'log': math.log,
|
| 234 |
+
'sin': math.sin, 'cos': math.cos, 'tan': math.tan,
|
| 235 |
+
'pi': math.pi, 'e': math.e,
|
| 236 |
+
'floor': math.floor, 'ceil': math.ceil
|
| 237 |
+
}
|
| 238 |
+
result = eval(expression, {"__builtins__": {}}, allowed_functions)
|
| 239 |
+
return str(result)
|
| 240 |
+
|
| 241 |
+
except Exception as e:
|
| 242 |
+
return f"Error in calculation: {str(e)}"
|
| 243 |
+
|
| 244 |
+
@tool
|
| 245 |
+
def smart_text_analyzer(text: str, task_type: str = "general") -> str:
|
| 246 |
+
"""
|
| 247 |
+
Analyzes text with focus on GAIA-specific tasks.
|
| 248 |
+
|
| 249 |
+
Args:
|
| 250 |
+
text: Text to analyze.
|
| 251 |
+
task_type: 'general', 'names', 'dates', 'numbers', 'veterinary'.
|
| 252 |
+
|
| 253 |
+
Returns:
|
| 254 |
+
Analysis results.
|
| 255 |
+
"""
|
| 256 |
+
try:
|
| 257 |
+
if task_type == "names":
|
| 258 |
+
# Extract proper names
|
| 259 |
+
name_pattern = r'\b[A-Z][a-z]+(?:\s+[A-Z][a-z]+)*\b'
|
| 260 |
+
names = re.findall(name_pattern, text)
|
| 261 |
+
return f"Found names: {list(set(names))}"
|
| 262 |
+
|
| 263 |
+
elif task_type == "veterinary":
|
| 264 |
+
return veterinary_document_analyzer(text)
|
| 265 |
+
|
| 266 |
+
elif task_type == "dates":
|
| 267 |
+
date_patterns = [
|
| 268 |
+
r'\d{1,2}/\d{1,2}/\d{4}', # MM/DD/YYYY
|
| 269 |
+
r'\d{4}-\d{2}-\d{2}', # YYYY-MM-DD
|
| 270 |
+
r'\b\w+\s+\d{1,2},\s+\d{4}\b' # Month DD, YYYY
|
| 271 |
+
]
|
| 272 |
+
dates = []
|
| 273 |
+
for pattern in date_patterns:
|
| 274 |
+
dates.extend(re.findall(pattern, text))
|
| 275 |
+
return f"Found dates: {dates}"
|
| 276 |
+
|
| 277 |
+
elif task_type == "numbers":
|
| 278 |
+
numbers = re.findall(r'-?\d+\.?\d*', text)
|
| 279 |
+
return f"Found numbers: {[float(n) for n in numbers if n]}"
|
| 280 |
+
|
| 281 |
+
else:
|
| 282 |
+
return f"Characters: {len(text)}, Words: {len(text.split())}, Lines: {len(text.splitlines())}"
|
| 283 |
+
|
| 284 |
+
except Exception as e:
|
| 285 |
+
return f"Error in text analysis: {str(e)}"
|
| 286 |
+
|
| 287 |
+
# --- Configuration du modèle OPTIMISÉE ---
|
| 288 |
+
# Changer pour un modèle plus léger qui ne dépasse pas ton quota
|
| 289 |
+
model = HfApiModel(
|
| 290 |
+
max_tokens=2048, # Réduit pour économiser le quota
|
| 291 |
+
temperature=0.1,
|
| 292 |
+
model_id='microsoft/DialoGPT-medium', # Modèle plus léger
|
| 293 |
+
# Ou essaye: 'HuggingFaceH4/zephyr-7b-beta' si disponible
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
# --- Initialisation des outils ---
|
| 297 |
+
search_tool = DuckDuckGoSearchTool()
|
| 298 |
+
|
| 299 |
+
# IMPORTANT: Ajouter TOUS les outils à la liste
|
| 300 |
+
tools = [
|
| 301 |
+
search_tool, # ⚠️ TU AVAIS OUBLIÉ ÇA !
|
| 302 |
+
web_browser,
|
| 303 |
+
youtube_transcript_extractor,
|
| 304 |
+
image_ocr_analyzer,
|
| 305 |
+
pdf_text_extractor,
|
| 306 |
+
veterinary_document_analyzer,
|
| 307 |
+
smart_text_analyzer,
|
| 308 |
+
advanced_calculator,
|
| 309 |
+
analyze_excel_file,
|
| 310 |
+
]
|
| 311 |
+
|
| 312 |
+
# Agent avec plus d'étapes pour les tâches complexes
|
| 313 |
+
agent_code = CodeAgent(
|
| 314 |
+
tools=tools,
|
| 315 |
+
model=model,
|
| 316 |
+
max_steps=15, # Augmenté pour les tâches complexes GAIA
|
| 317 |
+
additional_authorized_imports=[
|
| 318 |
+
"os", "tempfile", "pathlib", "re", "json", "math", "pandas",
|
| 319 |
+
"requests", "PIL", "pytesseract", "PyPDF2", "yt_dlp"
|
| 320 |
+
]
|
| 321 |
+
)
|
| 322 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 323 |
|
|
|
|
|
|
|
| 324 |
class BasicAgent:
|
| 325 |
def __init__(self):
|
| 326 |
+
print("Enhanced GAIA Agent initialized with web browsing capabilities.")
|
| 327 |
+
self.agent = agent_code
|
| 328 |
+
|
| 329 |
def __call__(self, question: str) -> str:
|
| 330 |
+
try:
|
| 331 |
+
# Prompt amélioré spécifiquement pour GAIA
|
| 332 |
+
enhanced_question = self._create_gaia_prompt(question)
|
| 333 |
+
|
| 334 |
+
result = self.agent.run(enhanced_question)
|
| 335 |
+
|
| 336 |
+
# Post-processing pour GAIA
|
| 337 |
+
cleaned_result = self._clean_gaia_result(result)
|
| 338 |
+
|
| 339 |
+
return cleaned_result if cleaned_result else "No response generated."
|
| 340 |
+
|
| 341 |
+
except Exception as e:
|
| 342 |
+
print(f"Agent error: {e}")
|
| 343 |
+
# Fallback strategy
|
| 344 |
+
try:
|
| 345 |
+
fallback_prompt = f"""
|
| 346 |
+
CRITICAL GAIA TASK: {question}
|
| 347 |
+
|
| 348 |
+
Use available tools to find the answer. If it's a YouTube video, use youtube_transcript_extractor.
|
| 349 |
+
If it's about documents, use appropriate analyzers.
|
| 350 |
+
Be precise and direct in your final answer.
|
| 351 |
+
"""
|
| 352 |
+
simple_result = self.agent.run(fallback_prompt)
|
| 353 |
+
return simple_result if simple_result else f"Error: {e}"
|
| 354 |
+
except:
|
| 355 |
+
return f"Error: {e}"
|
| 356 |
+
|
| 357 |
+
def _create_gaia_prompt(self, question: str) -> str:
|
| 358 |
+
"""Crée un prompt optimisé pour GAIA."""
|
| 359 |
+
return f"""
|
| 360 |
+
GAIA EVALUATION TASK - ANSWER PRECISELY
|
| 361 |
+
|
| 362 |
+
Question: {question}
|
| 363 |
+
|
| 364 |
+
INSTRUCTIONS:
|
| 365 |
+
1. If this involves a YouTube video, use youtube_transcript_extractor tool
|
| 366 |
+
2. If this involves web content, use web_browser tool
|
| 367 |
+
3. If this involves documents/PDFs, use appropriate analyzers
|
| 368 |
+
4. If this involves images, use image_ocr_analyzer
|
| 369 |
+
5. If this needs search, use the search tool
|
| 370 |
+
6. For calculations, use advanced_calculator
|
| 371 |
+
7. Be EXACT and SPECIFIC in your final answer
|
| 372 |
+
8. Don't provide explanations unless asked - just the answer
|
| 373 |
+
|
| 374 |
+
Work step by step and use the right tools for this task.
|
| 375 |
+
"""
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
|
| 380 |
|
| 381 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
| 382 |
"""
|