File size: 12,943 Bytes
359f755
77c0f20
359f755
de8f813
 
24c8512
359f755
 
 
 
 
 
 
 
 
 
 
1b2d49a
359f755
24c8512
77c0f20
70ea05e
359f755
 
24c8512
 
77c0f20
ce8066d
 
 
 
359f755
1b2d49a
 
 
 
 
 
 
 
359f755
 
c1fc4e2
536d515
 
21bc425
536d515
c1fc4e2
21bc425
536d515
 
 
 
 
21bc425
 
 
 
 
 
 
 
536d515
 
 
 
21bc425
536d515
21bc425
 
536d515
21bc425
 
 
 
 
 
 
 
536d515
21bc425
 
 
 
 
536d515
21bc425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
536d515
21bc425
 
 
 
 
 
536d515
c1fc4e2
536d515
 
21bc425
536d515
 
21bc425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1fc4e2
70ea05e
 
536d515
 
ce8066d
70ea05e
c1fc4e2
70ea05e
536d515
 
21bc425
536d515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21bc425
 
 
 
 
 
 
 
 
536d515
 
 
 
 
 
 
 
21bc425
 
 
 
 
536d515
 
 
 
 
 
 
 
 
 
70ea05e
24c8512
77c0f20
24c8512
 
 
 
 
 
 
 
 
 
de8f813
24c8512
 
 
 
 
 
 
 
 
 
77c0f20
 
24c8512
 
70ea05e
77c0f20
 
 
 
359f755
 
 
 
 
 
77c0f20
359f755
 
77c0f20
359f755
 
77c0f20
536d515
 
359f755
 
536d515
77c0f20
359f755
70ea05e
 
 
 
536d515
70ea05e
 
77c0f20
 
70ea05e
536d515
 
 
 
 
 
 
77c0f20
70ea05e
77c0f20
c1fc4e2
359f755
 
77c0f20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import gradio as gr
from gradio_leaderboard import Leaderboard
import pandas as pd
from huggingface_hub import snapshot_download, create_repo
from huggingface_hub.utils import RepositoryNotFoundError
import os

from src.about import (
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    AutoEvalColumn,
    fields,
)
from src.envs import API, EVAL_RESULTS_PATH, RESULTS_REPO, TOKEN, OWNER
from src.populate import get_leaderboard_df
from src.evaluation.dynamic_eval import run_dynamic_perplexity_eval

def init_leaderboard(dataframe):
    if dataframe is None:
        raise ValueError("Leaderboard DataFrame is None.")
    
    print("\n=== Initializing Leaderboard ===", flush=True)
    print(f"DataFrame shape: {dataframe.shape}", flush=True)
    print(f"DataFrame columns: {dataframe.columns.tolist()}", flush=True)
    
    return Leaderboard(
        value=dataframe,
        select_columns=[c.name for c in fields(AutoEvalColumn) if not c.hidden],
        search_columns=[AutoEvalColumn.model.name],
        hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
        filter_columns=[
            AutoEvalColumn.model_type.name,
            AutoEvalColumn.precision.name,
        ],
    )

def refresh_leaderboard():
    import sys
    import traceback
    import pandas as pd
    
    try:
        sys.stderr.write("=== REFRESH LEADERBOARD DEBUG ===\n")
        sys.stderr.write("Refreshing leaderboard data...\n")
        sys.stderr.flush()
        
        # Get fresh leaderboard data
        df = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS)
        
        sys.stderr.write(f"get_leaderboard_df returned: {type(df)}\n")
        if df is not None:
            sys.stderr.write(f"DataFrame shape: {df.shape}\n")
            sys.stderr.write(f"DataFrame columns: {df.columns.tolist()}\n")
            sys.stderr.write(f"DataFrame empty: {df.empty}\n")
        else:
            sys.stderr.write("DataFrame is None!\n")
        sys.stderr.flush()
        
        # Check if DataFrame is valid for leaderboard
        if df is None:
            sys.stderr.write("DataFrame is None, creating fallback DataFrame\n")
            sys.stderr.flush()
            # Create a fallback DataFrame
            df = create_fallback_dataframe()
            
        elif df.empty:
            sys.stderr.write("DataFrame is empty, creating fallback DataFrame\n")
            sys.stderr.flush()
            # Create a fallback DataFrame for empty case
            df = create_fallback_dataframe()
        
        elif not all(col in df.columns for col in COLS):
            sys.stderr.write(f"DataFrame missing required columns. Has: {df.columns.tolist()}, Needs: {COLS}\n")
            sys.stderr.flush()
            # Create a fallback DataFrame for missing columns
            df = create_fallback_dataframe()
        
        sys.stderr.write(f"Final DataFrame for leaderboard - Shape: {df.shape}, Columns: {df.columns.tolist()}\n")
        sys.stderr.flush()
        
        # Ensure DataFrame has the exact columns expected
        for col in COLS:
            if col not in df.columns:
                sys.stderr.write(f"Adding missing column: {col}\n")
                if col in BENCHMARK_COLS or col == AutoEvalColumn.average.name:
                    df[col] = 0.0
                elif col == AutoEvalColumn.model.name:
                    df[col] = "Unknown Model"
                elif col == AutoEvalColumn.model_type_symbol.name:
                    df[col] = "?"
                else:
                    df[col] = ""
                sys.stderr.flush()
        
        # Reorder columns to match expected order
        df = df[COLS]
        
        sys.stderr.write("Creating leaderboard component...\n")
        sys.stderr.flush()
        
        new_leaderboard = init_leaderboard(df)
        sys.stderr.write("Leaderboard component created successfully\n")
        sys.stderr.flush()
        
        return new_leaderboard
        
    except Exception as e:
        error_msg = str(e)
        traceback_str = traceback.format_exc()
        sys.stderr.write(f"CRITICAL ERROR in refresh_leaderboard: {error_msg}\n")
        sys.stderr.write(f"Traceback: {traceback_str}\n")
        sys.stderr.flush()
        
        # Create emergency fallback leaderboard
        try:
            sys.stderr.write("Creating emergency fallback leaderboard...\n")
            sys.stderr.flush()
            fallback_df = create_fallback_dataframe()
            return init_leaderboard(fallback_df)
        except Exception as fallback_error:
            sys.stderr.write(f"Even fallback failed: {fallback_error}\n")
            sys.stderr.flush()
            raise Exception(f"Complete leaderboard failure: {error_msg}")

def create_fallback_dataframe():
    """Create a minimal valid DataFrame that won't crash the leaderboard"""
    import pandas as pd
    import sys
    
    sys.stderr.write("Creating fallback DataFrame...\n")
    sys.stderr.flush()
    
    # Create minimal valid data
    fallback_data = {col: [] for col in COLS}
    
    # Add one dummy row to prevent leaderboard component from crashing
    dummy_row = {}
    for col in COLS:
        if col in BENCHMARK_COLS or col == AutoEvalColumn.average.name:
            dummy_row[col] = 0.0
        elif col == AutoEvalColumn.model.name:
            dummy_row[col] = "No models evaluated yet"
        elif col == AutoEvalColumn.model_type_symbol.name:
            dummy_row[col] = "?"
        elif col == AutoEvalColumn.precision.name:
            dummy_row[col] = "float16"
        elif col == AutoEvalColumn.model_type.name:
            dummy_row[col] = "pretrained"
        elif col == AutoEvalColumn.weight_type.name:
            dummy_row[col] = "Original"
        elif col == AutoEvalColumn.architecture.name:
            dummy_row[col] = "Unknown"
        elif col == AutoEvalColumn.still_on_hub.name:
            dummy_row[col] = True
        elif col == AutoEvalColumn.license.name:
            dummy_row[col] = "Unknown"
        elif col == AutoEvalColumn.params.name:
            dummy_row[col] = 0.0
        elif col == AutoEvalColumn.likes.name:
            dummy_row[col] = 0.0
        elif col == AutoEvalColumn.revision.name:
            dummy_row[col] = ""
        else:
            dummy_row[col] = ""
    
    df = pd.DataFrame([dummy_row])
    sys.stderr.write(f"Fallback DataFrame created with shape: {df.shape}\n")
    sys.stderr.write(f"Fallback DataFrame columns: {df.columns.tolist()}\n")
    sys.stderr.flush()
    
    return df

def run_perplexity_test(model_name, revision, precision):
    """Run perplexity evaluation on demand."""
    import sys
    import traceback
    
    if not model_name:
        return "Please enter a model name.", None
    
    try:
        # Use stderr for more reliable logging in HF Spaces
        sys.stderr.write(f"\n=== RUNNING PERPLEXITY TEST ===\n")
        sys.stderr.write(f"Model: {model_name}\n")
        sys.stderr.write(f"Revision: {revision}\n")
        sys.stderr.write(f"Precision: {precision}\n")
        sys.stderr.flush()
        
        success, result = run_dynamic_perplexity_eval(model_name, revision, precision)
        sys.stderr.write(f"Evaluation result - Success: {success}, Result: {result}\n")
        sys.stderr.flush()
        
        if success:
            try:
                # Try to refresh leaderboard
                sys.stderr.write("Attempting to refresh leaderboard...\n")
                sys.stderr.flush()
                
                new_leaderboard = refresh_leaderboard()
                
                if new_leaderboard is not None:
                    sys.stderr.write("Leaderboard refresh successful\n")
                    sys.stderr.flush()
                    return f"βœ… Perplexity evaluation completed!\nPerplexity: {result:.4f}\n\nResults saved and leaderboard updated.", new_leaderboard
                else:
                    sys.stderr.write("Leaderboard refresh returned None\n")
                    sys.stderr.flush()
                    return f"βœ… Perplexity evaluation completed!\nPerplexity: {result:.4f}\n\n⚠️ Results saved but leaderboard update returned None.\n\nPlease refresh the page to see updated results.", None
                    
            except Exception as refresh_error:
                # If leaderboard refresh fails, still show success but don't update leaderboard
                error_msg = str(refresh_error)
                traceback_str = traceback.format_exc()
                sys.stderr.write(f"Leaderboard refresh failed: {error_msg}\n")
                sys.stderr.write(f"Traceback: {traceback_str}\n")
                sys.stderr.flush()
                
                # Check if it's the specific "must have a value set" error
                if "must have a value set" in error_msg.lower():
                    return f"βœ… Perplexity evaluation completed!\nPerplexity: {result:.4f}\n\n⚠️ Results saved but leaderboard component failed to update due to data structure issue.\n\n**Please refresh the page** to see your results in the main leaderboard.", None
                else:
                    return f"βœ… Perplexity evaluation completed!\nPerplexity: {result:.4f}\n\n⚠️ Results saved but leaderboard refresh failed: {error_msg}\n\nPlease refresh the page to see updated results.", None
        else:
            return f"❌ Evaluation failed: {result}", None
            
    except Exception as e:
        error_msg = str(e)
        traceback_str = traceback.format_exc()
        sys.stderr.write(f"Critical error in run_perplexity_test: {error_msg}\n")
        sys.stderr.write(f"Traceback: {traceback_str}\n")
        sys.stderr.flush()
        return f"❌ Critical error: {error_msg}", None

# Initialize results repository and directory
try:
    # Try to download existing repository
    try:
        snapshot_download(
            repo_id=RESULTS_REPO,
            local_dir=EVAL_RESULTS_PATH,
            repo_type="dataset",
            tqdm_class=None,
            etag_timeout=30,
            token=TOKEN
        )
    except RepositoryNotFoundError:
        # Create the repository if it doesn't exist
        print(f"Creating new results repository: {RESULTS_REPO}")
        create_repo(
            repo_id=RESULTS_REPO,
            repo_type="dataset",
            private=False,
            token=TOKEN
        )
        # Create local directory
        os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
except Exception as e:
    print(f"Error initializing results: {e}")
    # Ensure local directory exists even if repo operations fail
    os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)

# Get initial leaderboard data
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS)

# Create the Gradio interface
demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… Leaderboard", elem_id="leaderboard-tab", id=0):
            leaderboard = init_leaderboard(LEADERBOARD_DF)

        with gr.TabItem("πŸ“ About", elem_id="about-tab", id=1):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("πŸ§ͺ Test Model", elem_id="test-model-tab", id=2):
            gr.Markdown("## Run Perplexity Test\n\nTest any Hugging Face model for perplexity evaluation.")
            
            with gr.Row():
                with gr.Column():
                    model_name = gr.Textbox(label="Model name", placeholder="openai-community/gpt2")
                    revision = gr.Textbox(label="Revision", placeholder="main", value="main")
                    precision = gr.Dropdown(
                        choices=["float16", "bfloat16"],
                        label="Precision",
                        value="float16"
                    )
                    debug_mode = gr.Checkbox(label="Enable debug mode (more verbose logging)", value=True)
                
                with gr.Column():
                    test_button = gr.Button("πŸš€ Run Perplexity Test", variant="primary")
                    result = gr.Markdown()
            
            gr.Markdown("""
            ### Tips:
            - Check stderr logs in HF Spaces for detailed debugging information
            - If evaluation succeeds but leaderboard doesn't update, try refreshing the page
            - Example models to test: `openai-community/gpt2`, `EleutherAI/gpt-neo-1.3B`
            """)
            
            test_button.click(
                run_perplexity_test,
                [model_name, revision, precision],
                [result, leaderboard]
            )

demo.queue(default_concurrency_limit=5).launch()