Spaces:
Runtime error
Runtime error
File size: 12,943 Bytes
359f755 77c0f20 359f755 de8f813 24c8512 359f755 1b2d49a 359f755 24c8512 77c0f20 70ea05e 359f755 24c8512 77c0f20 ce8066d 359f755 1b2d49a 359f755 c1fc4e2 536d515 21bc425 536d515 c1fc4e2 21bc425 536d515 21bc425 536d515 21bc425 536d515 21bc425 536d515 21bc425 536d515 21bc425 536d515 21bc425 536d515 21bc425 536d515 c1fc4e2 536d515 21bc425 536d515 21bc425 c1fc4e2 70ea05e 536d515 ce8066d 70ea05e c1fc4e2 70ea05e 536d515 21bc425 536d515 21bc425 536d515 21bc425 536d515 70ea05e 24c8512 77c0f20 24c8512 de8f813 24c8512 77c0f20 24c8512 70ea05e 77c0f20 359f755 77c0f20 359f755 77c0f20 359f755 77c0f20 536d515 359f755 536d515 77c0f20 359f755 70ea05e 536d515 70ea05e 77c0f20 70ea05e 536d515 77c0f20 70ea05e 77c0f20 c1fc4e2 359f755 77c0f20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
import gradio as gr
from gradio_leaderboard import Leaderboard
import pandas as pd
from huggingface_hub import snapshot_download, create_repo
from huggingface_hub.utils import RepositoryNotFoundError
import os
from src.about import (
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
AutoEvalColumn,
fields,
)
from src.envs import API, EVAL_RESULTS_PATH, RESULTS_REPO, TOKEN, OWNER
from src.populate import get_leaderboard_df
from src.evaluation.dynamic_eval import run_dynamic_perplexity_eval
def init_leaderboard(dataframe):
if dataframe is None:
raise ValueError("Leaderboard DataFrame is None.")
print("\n=== Initializing Leaderboard ===", flush=True)
print(f"DataFrame shape: {dataframe.shape}", flush=True)
print(f"DataFrame columns: {dataframe.columns.tolist()}", flush=True)
return Leaderboard(
value=dataframe,
select_columns=[c.name for c in fields(AutoEvalColumn) if not c.hidden],
search_columns=[AutoEvalColumn.model.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
AutoEvalColumn.model_type.name,
AutoEvalColumn.precision.name,
],
)
def refresh_leaderboard():
import sys
import traceback
import pandas as pd
try:
sys.stderr.write("=== REFRESH LEADERBOARD DEBUG ===\n")
sys.stderr.write("Refreshing leaderboard data...\n")
sys.stderr.flush()
# Get fresh leaderboard data
df = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS)
sys.stderr.write(f"get_leaderboard_df returned: {type(df)}\n")
if df is not None:
sys.stderr.write(f"DataFrame shape: {df.shape}\n")
sys.stderr.write(f"DataFrame columns: {df.columns.tolist()}\n")
sys.stderr.write(f"DataFrame empty: {df.empty}\n")
else:
sys.stderr.write("DataFrame is None!\n")
sys.stderr.flush()
# Check if DataFrame is valid for leaderboard
if df is None:
sys.stderr.write("DataFrame is None, creating fallback DataFrame\n")
sys.stderr.flush()
# Create a fallback DataFrame
df = create_fallback_dataframe()
elif df.empty:
sys.stderr.write("DataFrame is empty, creating fallback DataFrame\n")
sys.stderr.flush()
# Create a fallback DataFrame for empty case
df = create_fallback_dataframe()
elif not all(col in df.columns for col in COLS):
sys.stderr.write(f"DataFrame missing required columns. Has: {df.columns.tolist()}, Needs: {COLS}\n")
sys.stderr.flush()
# Create a fallback DataFrame for missing columns
df = create_fallback_dataframe()
sys.stderr.write(f"Final DataFrame for leaderboard - Shape: {df.shape}, Columns: {df.columns.tolist()}\n")
sys.stderr.flush()
# Ensure DataFrame has the exact columns expected
for col in COLS:
if col not in df.columns:
sys.stderr.write(f"Adding missing column: {col}\n")
if col in BENCHMARK_COLS or col == AutoEvalColumn.average.name:
df[col] = 0.0
elif col == AutoEvalColumn.model.name:
df[col] = "Unknown Model"
elif col == AutoEvalColumn.model_type_symbol.name:
df[col] = "?"
else:
df[col] = ""
sys.stderr.flush()
# Reorder columns to match expected order
df = df[COLS]
sys.stderr.write("Creating leaderboard component...\n")
sys.stderr.flush()
new_leaderboard = init_leaderboard(df)
sys.stderr.write("Leaderboard component created successfully\n")
sys.stderr.flush()
return new_leaderboard
except Exception as e:
error_msg = str(e)
traceback_str = traceback.format_exc()
sys.stderr.write(f"CRITICAL ERROR in refresh_leaderboard: {error_msg}\n")
sys.stderr.write(f"Traceback: {traceback_str}\n")
sys.stderr.flush()
# Create emergency fallback leaderboard
try:
sys.stderr.write("Creating emergency fallback leaderboard...\n")
sys.stderr.flush()
fallback_df = create_fallback_dataframe()
return init_leaderboard(fallback_df)
except Exception as fallback_error:
sys.stderr.write(f"Even fallback failed: {fallback_error}\n")
sys.stderr.flush()
raise Exception(f"Complete leaderboard failure: {error_msg}")
def create_fallback_dataframe():
"""Create a minimal valid DataFrame that won't crash the leaderboard"""
import pandas as pd
import sys
sys.stderr.write("Creating fallback DataFrame...\n")
sys.stderr.flush()
# Create minimal valid data
fallback_data = {col: [] for col in COLS}
# Add one dummy row to prevent leaderboard component from crashing
dummy_row = {}
for col in COLS:
if col in BENCHMARK_COLS or col == AutoEvalColumn.average.name:
dummy_row[col] = 0.0
elif col == AutoEvalColumn.model.name:
dummy_row[col] = "No models evaluated yet"
elif col == AutoEvalColumn.model_type_symbol.name:
dummy_row[col] = "?"
elif col == AutoEvalColumn.precision.name:
dummy_row[col] = "float16"
elif col == AutoEvalColumn.model_type.name:
dummy_row[col] = "pretrained"
elif col == AutoEvalColumn.weight_type.name:
dummy_row[col] = "Original"
elif col == AutoEvalColumn.architecture.name:
dummy_row[col] = "Unknown"
elif col == AutoEvalColumn.still_on_hub.name:
dummy_row[col] = True
elif col == AutoEvalColumn.license.name:
dummy_row[col] = "Unknown"
elif col == AutoEvalColumn.params.name:
dummy_row[col] = 0.0
elif col == AutoEvalColumn.likes.name:
dummy_row[col] = 0.0
elif col == AutoEvalColumn.revision.name:
dummy_row[col] = ""
else:
dummy_row[col] = ""
df = pd.DataFrame([dummy_row])
sys.stderr.write(f"Fallback DataFrame created with shape: {df.shape}\n")
sys.stderr.write(f"Fallback DataFrame columns: {df.columns.tolist()}\n")
sys.stderr.flush()
return df
def run_perplexity_test(model_name, revision, precision):
"""Run perplexity evaluation on demand."""
import sys
import traceback
if not model_name:
return "Please enter a model name.", None
try:
# Use stderr for more reliable logging in HF Spaces
sys.stderr.write(f"\n=== RUNNING PERPLEXITY TEST ===\n")
sys.stderr.write(f"Model: {model_name}\n")
sys.stderr.write(f"Revision: {revision}\n")
sys.stderr.write(f"Precision: {precision}\n")
sys.stderr.flush()
success, result = run_dynamic_perplexity_eval(model_name, revision, precision)
sys.stderr.write(f"Evaluation result - Success: {success}, Result: {result}\n")
sys.stderr.flush()
if success:
try:
# Try to refresh leaderboard
sys.stderr.write("Attempting to refresh leaderboard...\n")
sys.stderr.flush()
new_leaderboard = refresh_leaderboard()
if new_leaderboard is not None:
sys.stderr.write("Leaderboard refresh successful\n")
sys.stderr.flush()
return f"β
Perplexity evaluation completed!\nPerplexity: {result:.4f}\n\nResults saved and leaderboard updated.", new_leaderboard
else:
sys.stderr.write("Leaderboard refresh returned None\n")
sys.stderr.flush()
return f"β
Perplexity evaluation completed!\nPerplexity: {result:.4f}\n\nβ οΈ Results saved but leaderboard update returned None.\n\nPlease refresh the page to see updated results.", None
except Exception as refresh_error:
# If leaderboard refresh fails, still show success but don't update leaderboard
error_msg = str(refresh_error)
traceback_str = traceback.format_exc()
sys.stderr.write(f"Leaderboard refresh failed: {error_msg}\n")
sys.stderr.write(f"Traceback: {traceback_str}\n")
sys.stderr.flush()
# Check if it's the specific "must have a value set" error
if "must have a value set" in error_msg.lower():
return f"β
Perplexity evaluation completed!\nPerplexity: {result:.4f}\n\nβ οΈ Results saved but leaderboard component failed to update due to data structure issue.\n\n**Please refresh the page** to see your results in the main leaderboard.", None
else:
return f"β
Perplexity evaluation completed!\nPerplexity: {result:.4f}\n\nβ οΈ Results saved but leaderboard refresh failed: {error_msg}\n\nPlease refresh the page to see updated results.", None
else:
return f"β Evaluation failed: {result}", None
except Exception as e:
error_msg = str(e)
traceback_str = traceback.format_exc()
sys.stderr.write(f"Critical error in run_perplexity_test: {error_msg}\n")
sys.stderr.write(f"Traceback: {traceback_str}\n")
sys.stderr.flush()
return f"β Critical error: {error_msg}", None
# Initialize results repository and directory
try:
# Try to download existing repository
try:
snapshot_download(
repo_id=RESULTS_REPO,
local_dir=EVAL_RESULTS_PATH,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
token=TOKEN
)
except RepositoryNotFoundError:
# Create the repository if it doesn't exist
print(f"Creating new results repository: {RESULTS_REPO}")
create_repo(
repo_id=RESULTS_REPO,
repo_type="dataset",
private=False,
token=TOKEN
)
# Create local directory
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
except Exception as e:
print(f"Error initializing results: {e}")
# Ensure local directory exists even if repo operations fail
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
# Get initial leaderboard data
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS)
# Create the Gradio interface
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
Leaderboard", elem_id="leaderboard-tab", id=0):
leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.TabItem("π About", elem_id="about-tab", id=1):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("π§ͺ Test Model", elem_id="test-model-tab", id=2):
gr.Markdown("## Run Perplexity Test\n\nTest any Hugging Face model for perplexity evaluation.")
with gr.Row():
with gr.Column():
model_name = gr.Textbox(label="Model name", placeholder="openai-community/gpt2")
revision = gr.Textbox(label="Revision", placeholder="main", value="main")
precision = gr.Dropdown(
choices=["float16", "bfloat16"],
label="Precision",
value="float16"
)
debug_mode = gr.Checkbox(label="Enable debug mode (more verbose logging)", value=True)
with gr.Column():
test_button = gr.Button("π Run Perplexity Test", variant="primary")
result = gr.Markdown()
gr.Markdown("""
### Tips:
- Check stderr logs in HF Spaces for detailed debugging information
- If evaluation succeeds but leaderboard doesn't update, try refreshing the page
- Example models to test: `openai-community/gpt2`, `EleutherAI/gpt-neo-1.3B`
""")
test_button.click(
run_perplexity_test,
[model_name, revision, precision],
[result, leaderboard]
)
demo.queue(default_concurrency_limit=5).launch() |