Spaces:
Runtime error
Runtime error
File size: 7,224 Bytes
359f755 de8f813 24c8512 359f755 1b2d49a 359f755 24c8512 77c0f20 70ea05e 359f755 f02d36b 77c0f20 f02d36b ce8066d f02d36b 359f755 70ea05e 536d515 3a2ac99 ce8066d 70ea05e 86c1853 70ea05e 536d515 21bc425 536d515 86c1853 3a2ac99 f02d36b 3a2ac99 86c1853 f02d36b 86c1853 536d515 86c1853 536d515 86c1853 70ea05e 24c8512 77c0f20 24c8512 de8f813 24c8512 77c0f20 24c8512 70ea05e f02d36b 77c0f20 359f755 f02d36b 359f755 77c0f20 359f755 77c0f20 536d515 359f755 536d515 77c0f20 359f755 70ea05e 536d515 70ea05e 77c0f20 70ea05e f02d36b 536d515 3a2ac99 f02d36b 3a2ac99 f02d36b 536d515 77c0f20 70ea05e 77c0f20 86c1853 359f755 77c0f20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import gradio as gr
import pandas as pd
from huggingface_hub import snapshot_download, create_repo
from huggingface_hub.utils import RepositoryNotFoundError
import os
from src.about import (
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
AutoEvalColumn,
fields,
)
from src.envs import API, EVAL_RESULTS_PATH, RESULTS_REPO, TOKEN, OWNER
from src.populate import get_leaderboard_df
from src.evaluation.dynamic_eval import run_dynamic_perplexity_eval
def create_results_dataframe():
"""Create and return the results DataFrame for display"""
df = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS)
if df is None or df.empty:
# Return empty DataFrame with proper columns
return pd.DataFrame(columns=["Model", "Perplexity", "Average Score", "Type", "Precision"])
# Select and rename columns for display
display_df = df[[
AutoEvalColumn.model.name,
"Perplexity", # This matches the task column name from Tasks.task0.value.col_name
AutoEvalColumn.average.name,
AutoEvalColumn.model_type.name,
AutoEvalColumn.precision.name,
]].copy()
# Rename columns for better display
display_df.columns = ["Model", "Perplexity", "Average Score", "Type", "Precision"]
return display_df
def run_perplexity_test(model_name, revision, precision):
"""Run perplexity evaluation on demand."""
import sys
import traceback
import gradio as gr
if not model_name:
return "Please enter a model name.", gr.update(), gr.update()
try:
# Use stderr for more reliable logging in HF Spaces
sys.stderr.write(f"\n=== RUNNING PERPLEXITY TEST ===\n")
sys.stderr.write(f"Model: {model_name}\n")
sys.stderr.write(f"Revision: {revision}\n")
sys.stderr.write(f"Precision: {precision}\n")
sys.stderr.flush()
success, result = run_dynamic_perplexity_eval(model_name, revision, precision)
sys.stderr.write(f"Evaluation result - Success: {success}, Result: {result}\n")
sys.stderr.flush()
if success:
sys.stderr.write("Evaluation succeeded - updating both results tables\n")
sys.stderr.flush()
# Get updated results
updated_df = create_results_dataframe()
success_msg = f"""β
**Perplexity evaluation completed successfully!**
**Model**: {model_name}
**Perplexity Score**: {result:.4f}
π **Results have been saved and both tables have been updated!**"""
return success_msg, gr.update(value=updated_df), gr.update(value=updated_df)
else:
return f"β **Evaluation failed**: {result}", gr.update(), gr.update()
except Exception as e:
error_msg = str(e)
traceback_str = traceback.format_exc()
sys.stderr.write(f"Critical error in run_perplexity_test: {error_msg}\n")
sys.stderr.write(f"Traceback: {traceback_str}\n")
sys.stderr.flush()
return f"β **Critical error**: {error_msg}", gr.update(), gr.update()
# Initialize results repository and directory
try:
# Try to download existing repository
try:
snapshot_download(
repo_id=RESULTS_REPO,
local_dir=EVAL_RESULTS_PATH,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
token=TOKEN
)
except RepositoryNotFoundError:
# Create the repository if it doesn't exist
print(f"Creating new results repository: {RESULTS_REPO}")
create_repo(
repo_id=RESULTS_REPO,
repo_type="dataset",
private=False,
token=TOKEN
)
# Create local directory
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
except Exception as e:
print(f"Error initializing results: {e}")
# Ensure local directory exists even if repo operations fail
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
# Get initial results data
RESULTS_DF = create_results_dataframe()
# Create the Gradio interface
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
Results", elem_id="results-tab", id=0):
gr.Markdown("## Model Evaluation Results")
results_table = gr.DataFrame(
value=RESULTS_DF,
headers=["Model", "Perplexity", "Average Score", "Type", "Precision"],
interactive=False,
wrap=False
)
with gr.TabItem("π About", elem_id="about-tab", id=1):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("π§ͺ Test Model", elem_id="test-model-tab", id=2):
gr.Markdown("## Run Perplexity Test\n\nTest any Hugging Face model for perplexity evaluation.")
with gr.Row():
with gr.Column():
model_name = gr.Textbox(label="Model name", placeholder="openai-community/gpt2")
revision = gr.Textbox(label="Revision", placeholder="main", value="main")
precision = gr.Dropdown(
choices=["float16", "bfloat16"],
label="Precision",
value="float16"
)
debug_mode = gr.Checkbox(label="Enable debug mode (more verbose logging)", value=True)
with gr.Column():
test_button = gr.Button("π Run Perplexity Test", variant="primary")
result = gr.Markdown()
gr.Markdown("## Live Results")
live_results_table = gr.DataFrame(
value=RESULTS_DF,
headers=["Model", "Perplexity", "Average Score", "Type", "Precision"],
interactive=False,
wrap=False
)
gr.Markdown("""
### Tips:
- **Check stderr logs** in HF Spaces for detailed debugging information
- **Results will update automatically** in the table above after evaluation completes
- **Example models to test**: `openai-community/gpt2`, `EleutherAI/gpt-neo-1.3B`, `openai-community/gpt2-large`
- **Lower perplexity scores = better performance** (better at predicting text)
### How it works:
1. Enter a model name from Hugging Face Hub
2. Click "Run Perplexity Test"
3. Wait for evaluation to complete (may take a few minutes for large models)
4. Results will appear automatically in the table above!
""")
test_button.click(
run_perplexity_test,
[model_name, revision, precision],
[result, live_results_table, results_table]
)
demo.queue(default_concurrency_limit=5).launch() |