File size: 6,977 Bytes
359f755
 
de8f813
 
24c8512
359f755
 
 
 
 
 
 
 
 
 
 
1b2d49a
359f755
24c8512
77c0f20
359f755
f02d36b
 
1dd4b6a
 
 
 
 
f02d36b
1dd4b6a
 
 
 
f02d36b
1dd4b6a
 
f02d36b
1191811
77c0f20
1dd4b6a
 
 
1191811
1dd4b6a
f02d36b
1dd4b6a
f02d36b
 
1dd4b6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1191811
ce8066d
f02d36b
1191811
1dd4b6a
 
 
 
 
 
 
 
f02d36b
1dd4b6a
f02d36b
359f755
1191811
70ea05e
24c8512
77c0f20
24c8512
 
 
 
 
 
 
 
 
 
de8f813
24c8512
 
 
 
 
 
 
 
 
 
77c0f20
 
24c8512
 
70ea05e
4864926
1dd4b6a
1191811
4864926
1dd4b6a
4864926
 
 
 
 
 
1dd4b6a
 
 
f02d36b
77c0f20
1dd4b6a
 
 
 
77c0f20
1dd4b6a
 
 
359f755
 
 
 
 
 
f02d36b
 
 
 
1191811
f02d36b
 
 
359f755
77c0f20
359f755
 
1191811
 
f02d36b
536d515
1191811
 
 
 
 
 
 
 
 
 
3a2ac99
 
1191811
 
 
 
536d515
359f755
1dd4b6a
1191811
1dd4b6a
1191811
1dd4b6a
1191811
 
1dd4b6a
 
77c0f20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import gradio as gr
import pandas as pd
from huggingface_hub import snapshot_download, create_repo
from huggingface_hub.utils import RepositoryNotFoundError
import os

from src.about import (
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    AutoEvalColumn,
    fields,
)
from src.envs import API, EVAL_RESULTS_PATH, RESULTS_REPO, TOKEN, OWNER
from src.populate import get_leaderboard_df

def create_results_dataframe():
    """Create and return the results DataFrame for display"""
    import sys
    
    sys.stderr.write("\nπŸ“Š CREATE_RESULTS_DATAFRAME CALLED\n")
    sys.stderr.flush()
    
    df = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS)
    
    sys.stderr.write(f"πŸ“‹ Retrieved leaderboard df: {df.shape if df is not None else 'None'}\n")
    sys.stderr.flush()
    
    if df is None or df.empty:
        sys.stderr.write("⚠️ DataFrame is None or empty, returning empty DataFrame\n")
        sys.stderr.flush()
        # Return empty DataFrame with proper columns
        return pd.DataFrame(columns=["Model", "Match P-Value", "Type", "Precision"])
    
    sys.stderr.write(f"πŸ“Š Original DataFrame columns: {list(df.columns)}\n")
    sys.stderr.flush()
    
    # Check if required columns exist - only p-values matter
    required_cols = [
        AutoEvalColumn.model.name,
        AutoEvalColumn.model_trace_p_value.name,
        AutoEvalColumn.model_type.name,
        AutoEvalColumn.precision.name,
    ]
    
    missing_cols = [col for col in required_cols if col not in df.columns]
    if missing_cols:
        sys.stderr.write(f"⚠️ Missing columns in DataFrame: {missing_cols}\n")
        sys.stderr.flush()
        # Add missing columns with default values
        for col in missing_cols:
            if col == AutoEvalColumn.model_trace_p_value.name:
                df[col] = None
                sys.stderr.write(f"βž• Added {col} column with None values\n")
    
    # Select and rename columns for display
    try:
        display_df = df[required_cols].copy()
        sys.stderr.write(f"βœ… Selected columns successfully: {list(display_df.columns)}\n")
    except Exception as e:
        sys.stderr.write(f"πŸ’₯ Error selecting columns: {e}\n")
        sys.stderr.flush()
        return pd.DataFrame(columns=["Model", "Match P-Value", "Type", "Precision"])
    
    # Rename columns for better display
    display_df.columns = ["Model", "Match P-Value", "Type", "Precision"]
    
    sys.stderr.write(f"🎯 Final display DataFrame shape: {display_df.shape}\n")
    sys.stderr.write(f"🎯 Final columns: {list(display_df.columns)}\n")
    
    # Check p-value column
    if "Match P-Value" in display_df.columns:
        p_value_stats = display_df["Match P-Value"].describe()
        sys.stderr.write(f"πŸ“ˆ P-Value column stats:\n{p_value_stats}\n")
    
    sys.stderr.flush()
    return display_df

# Perplexity testing removed - we only focus on p-values now

# Initialize results repository and directory
try:
    # Try to download existing repository
    try:
        snapshot_download(
            repo_id=RESULTS_REPO,
            local_dir=EVAL_RESULTS_PATH,
            repo_type="dataset",
            tqdm_class=None,
            etag_timeout=30,
            token=TOKEN
        )
    except RepositoryNotFoundError:
        # Create the repository if it doesn't exist
        print(f"Creating new results repository: {RESULTS_REPO}")
        create_repo(
            repo_id=RESULTS_REPO,
            repo_type="dataset",
            private=False,
            token=TOKEN
        )
        # Create local directory
        os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
except Exception as e:
    print(f"Error initializing results: {e}")
    # Ensure local directory exists even if repo operations fail
    os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)

# Initialize allowed models
import sys
from src.evaluation.initialize_models import initialize_allowed_models

sys.stderr.write("\nπŸš€ STARTING GRADIO APP INITIALIZATION\n")
sys.stderr.write("πŸ“Š Initializing allowed models...\n")
sys.stderr.flush()

# Initialize the allowed models
initialize_allowed_models()

sys.stderr.write("πŸ“Š Creating initial results DataFrame...\n")
sys.stderr.flush()

RESULTS_DF = create_results_dataframe()

sys.stderr.write(f"βœ… Initial DataFrame created with shape: {RESULTS_DF.shape}\n")
sys.stderr.write(f"πŸ“‹ Columns: {list(RESULTS_DF.columns)}\n")
sys.stderr.flush()

# Create the Gradio interface
sys.stderr.write("🎨 Creating Gradio interface...\n")
sys.stderr.flush()

demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… Results", elem_id="results-tab", id=0):
            gr.Markdown("## Model Evaluation Results")
            results_table = gr.DataFrame(
                value=RESULTS_DF,
                headers=["Model", "Match P-Value", "Type", "Precision"],
                interactive=False,
                wrap=False
            )

        with gr.TabItem("πŸ“ About", elem_id="about-tab", id=1):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("πŸ”¬ Analysis", elem_id="analysis-tab", id=2):
            gr.Markdown("## Model Tracing Analysis\n\nP-values are computed automatically for all supported models.")
            
            gr.Markdown("""
            ### Current Analysis Status:
            - **P-values are computed automatically** using the model tracing pipeline
            - **Lower p-values indicate higher structural similarity** to Llama-2-7B
            - **Analysis compares neuron organization** across transformer layers
            - **Results appear in the main table** once computation is complete
            
            ### Supported Models:
            - `lmsys/vicuna-7b-v1.5` - Vicuna 7B v1.5
            - `ibm-granite/granite-7b-base` - IBM Granite 7B Base  
            - `EleutherAI/llemma_7b` - LLeMa 7B
            
            ### How it works:
            1. Models are automatically analyzed against Llama-2-7B base
            2. Match statistic with alignment is computed
            3. P-values indicate structural similarity preservation
            4. Results appear in the main Results tab
            """)

sys.stderr.write("🎯 GRADIO INTERFACE SETUP COMPLETE\n")
sys.stderr.write("πŸš€ LAUNCHING GRADIO APP WITH MODEL TRACING ANALYSIS\n")
sys.stderr.write("πŸ“Š Features enabled:\n")
sys.stderr.write("   - Model trace p-value computation (vs Llama-2-7B base)\n")
sys.stderr.write("   - Match statistic with alignment\n")
sys.stderr.write("   - Structural similarity analysis\n")
sys.stderr.write("πŸŽ‰ Ready to display p-values!\n")
sys.stderr.flush()

demo.queue(default_concurrency_limit=5).launch()