model_trace / app.py
Ahmed Ahmed
consolidate
21bc425
raw
history blame
12.9 kB
import gradio as gr
from gradio_leaderboard import Leaderboard
import pandas as pd
from huggingface_hub import snapshot_download, create_repo
from huggingface_hub.utils import RepositoryNotFoundError
import os
from src.about import (
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
AutoEvalColumn,
fields,
)
from src.envs import API, EVAL_RESULTS_PATH, RESULTS_REPO, TOKEN, OWNER
from src.populate import get_leaderboard_df
from src.evaluation.dynamic_eval import run_dynamic_perplexity_eval
def init_leaderboard(dataframe):
if dataframe is None:
raise ValueError("Leaderboard DataFrame is None.")
print("\n=== Initializing Leaderboard ===", flush=True)
print(f"DataFrame shape: {dataframe.shape}", flush=True)
print(f"DataFrame columns: {dataframe.columns.tolist()}", flush=True)
return Leaderboard(
value=dataframe,
select_columns=[c.name for c in fields(AutoEvalColumn) if not c.hidden],
search_columns=[AutoEvalColumn.model.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
AutoEvalColumn.model_type.name,
AutoEvalColumn.precision.name,
],
)
def refresh_leaderboard():
import sys
import traceback
import pandas as pd
try:
sys.stderr.write("=== REFRESH LEADERBOARD DEBUG ===\n")
sys.stderr.write("Refreshing leaderboard data...\n")
sys.stderr.flush()
# Get fresh leaderboard data
df = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS)
sys.stderr.write(f"get_leaderboard_df returned: {type(df)}\n")
if df is not None:
sys.stderr.write(f"DataFrame shape: {df.shape}\n")
sys.stderr.write(f"DataFrame columns: {df.columns.tolist()}\n")
sys.stderr.write(f"DataFrame empty: {df.empty}\n")
else:
sys.stderr.write("DataFrame is None!\n")
sys.stderr.flush()
# Check if DataFrame is valid for leaderboard
if df is None:
sys.stderr.write("DataFrame is None, creating fallback DataFrame\n")
sys.stderr.flush()
# Create a fallback DataFrame
df = create_fallback_dataframe()
elif df.empty:
sys.stderr.write("DataFrame is empty, creating fallback DataFrame\n")
sys.stderr.flush()
# Create a fallback DataFrame for empty case
df = create_fallback_dataframe()
elif not all(col in df.columns for col in COLS):
sys.stderr.write(f"DataFrame missing required columns. Has: {df.columns.tolist()}, Needs: {COLS}\n")
sys.stderr.flush()
# Create a fallback DataFrame for missing columns
df = create_fallback_dataframe()
sys.stderr.write(f"Final DataFrame for leaderboard - Shape: {df.shape}, Columns: {df.columns.tolist()}\n")
sys.stderr.flush()
# Ensure DataFrame has the exact columns expected
for col in COLS:
if col not in df.columns:
sys.stderr.write(f"Adding missing column: {col}\n")
if col in BENCHMARK_COLS or col == AutoEvalColumn.average.name:
df[col] = 0.0
elif col == AutoEvalColumn.model.name:
df[col] = "Unknown Model"
elif col == AutoEvalColumn.model_type_symbol.name:
df[col] = "?"
else:
df[col] = ""
sys.stderr.flush()
# Reorder columns to match expected order
df = df[COLS]
sys.stderr.write("Creating leaderboard component...\n")
sys.stderr.flush()
new_leaderboard = init_leaderboard(df)
sys.stderr.write("Leaderboard component created successfully\n")
sys.stderr.flush()
return new_leaderboard
except Exception as e:
error_msg = str(e)
traceback_str = traceback.format_exc()
sys.stderr.write(f"CRITICAL ERROR in refresh_leaderboard: {error_msg}\n")
sys.stderr.write(f"Traceback: {traceback_str}\n")
sys.stderr.flush()
# Create emergency fallback leaderboard
try:
sys.stderr.write("Creating emergency fallback leaderboard...\n")
sys.stderr.flush()
fallback_df = create_fallback_dataframe()
return init_leaderboard(fallback_df)
except Exception as fallback_error:
sys.stderr.write(f"Even fallback failed: {fallback_error}\n")
sys.stderr.flush()
raise Exception(f"Complete leaderboard failure: {error_msg}")
def create_fallback_dataframe():
"""Create a minimal valid DataFrame that won't crash the leaderboard"""
import pandas as pd
import sys
sys.stderr.write("Creating fallback DataFrame...\n")
sys.stderr.flush()
# Create minimal valid data
fallback_data = {col: [] for col in COLS}
# Add one dummy row to prevent leaderboard component from crashing
dummy_row = {}
for col in COLS:
if col in BENCHMARK_COLS or col == AutoEvalColumn.average.name:
dummy_row[col] = 0.0
elif col == AutoEvalColumn.model.name:
dummy_row[col] = "No models evaluated yet"
elif col == AutoEvalColumn.model_type_symbol.name:
dummy_row[col] = "?"
elif col == AutoEvalColumn.precision.name:
dummy_row[col] = "float16"
elif col == AutoEvalColumn.model_type.name:
dummy_row[col] = "pretrained"
elif col == AutoEvalColumn.weight_type.name:
dummy_row[col] = "Original"
elif col == AutoEvalColumn.architecture.name:
dummy_row[col] = "Unknown"
elif col == AutoEvalColumn.still_on_hub.name:
dummy_row[col] = True
elif col == AutoEvalColumn.license.name:
dummy_row[col] = "Unknown"
elif col == AutoEvalColumn.params.name:
dummy_row[col] = 0.0
elif col == AutoEvalColumn.likes.name:
dummy_row[col] = 0.0
elif col == AutoEvalColumn.revision.name:
dummy_row[col] = ""
else:
dummy_row[col] = ""
df = pd.DataFrame([dummy_row])
sys.stderr.write(f"Fallback DataFrame created with shape: {df.shape}\n")
sys.stderr.write(f"Fallback DataFrame columns: {df.columns.tolist()}\n")
sys.stderr.flush()
return df
def run_perplexity_test(model_name, revision, precision):
"""Run perplexity evaluation on demand."""
import sys
import traceback
if not model_name:
return "Please enter a model name.", None
try:
# Use stderr for more reliable logging in HF Spaces
sys.stderr.write(f"\n=== RUNNING PERPLEXITY TEST ===\n")
sys.stderr.write(f"Model: {model_name}\n")
sys.stderr.write(f"Revision: {revision}\n")
sys.stderr.write(f"Precision: {precision}\n")
sys.stderr.flush()
success, result = run_dynamic_perplexity_eval(model_name, revision, precision)
sys.stderr.write(f"Evaluation result - Success: {success}, Result: {result}\n")
sys.stderr.flush()
if success:
try:
# Try to refresh leaderboard
sys.stderr.write("Attempting to refresh leaderboard...\n")
sys.stderr.flush()
new_leaderboard = refresh_leaderboard()
if new_leaderboard is not None:
sys.stderr.write("Leaderboard refresh successful\n")
sys.stderr.flush()
return f"βœ… Perplexity evaluation completed!\nPerplexity: {result:.4f}\n\nResults saved and leaderboard updated.", new_leaderboard
else:
sys.stderr.write("Leaderboard refresh returned None\n")
sys.stderr.flush()
return f"βœ… Perplexity evaluation completed!\nPerplexity: {result:.4f}\n\n⚠️ Results saved but leaderboard update returned None.\n\nPlease refresh the page to see updated results.", None
except Exception as refresh_error:
# If leaderboard refresh fails, still show success but don't update leaderboard
error_msg = str(refresh_error)
traceback_str = traceback.format_exc()
sys.stderr.write(f"Leaderboard refresh failed: {error_msg}\n")
sys.stderr.write(f"Traceback: {traceback_str}\n")
sys.stderr.flush()
# Check if it's the specific "must have a value set" error
if "must have a value set" in error_msg.lower():
return f"βœ… Perplexity evaluation completed!\nPerplexity: {result:.4f}\n\n⚠️ Results saved but leaderboard component failed to update due to data structure issue.\n\n**Please refresh the page** to see your results in the main leaderboard.", None
else:
return f"βœ… Perplexity evaluation completed!\nPerplexity: {result:.4f}\n\n⚠️ Results saved but leaderboard refresh failed: {error_msg}\n\nPlease refresh the page to see updated results.", None
else:
return f"❌ Evaluation failed: {result}", None
except Exception as e:
error_msg = str(e)
traceback_str = traceback.format_exc()
sys.stderr.write(f"Critical error in run_perplexity_test: {error_msg}\n")
sys.stderr.write(f"Traceback: {traceback_str}\n")
sys.stderr.flush()
return f"❌ Critical error: {error_msg}", None
# Initialize results repository and directory
try:
# Try to download existing repository
try:
snapshot_download(
repo_id=RESULTS_REPO,
local_dir=EVAL_RESULTS_PATH,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
token=TOKEN
)
except RepositoryNotFoundError:
# Create the repository if it doesn't exist
print(f"Creating new results repository: {RESULTS_REPO}")
create_repo(
repo_id=RESULTS_REPO,
repo_type="dataset",
private=False,
token=TOKEN
)
# Create local directory
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
except Exception as e:
print(f"Error initializing results: {e}")
# Ensure local directory exists even if repo operations fail
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
# Get initial leaderboard data
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS)
# Create the Gradio interface
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("πŸ… Leaderboard", elem_id="leaderboard-tab", id=0):
leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.TabItem("πŸ“ About", elem_id="about-tab", id=1):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("πŸ§ͺ Test Model", elem_id="test-model-tab", id=2):
gr.Markdown("## Run Perplexity Test\n\nTest any Hugging Face model for perplexity evaluation.")
with gr.Row():
with gr.Column():
model_name = gr.Textbox(label="Model name", placeholder="openai-community/gpt2")
revision = gr.Textbox(label="Revision", placeholder="main", value="main")
precision = gr.Dropdown(
choices=["float16", "bfloat16"],
label="Precision",
value="float16"
)
debug_mode = gr.Checkbox(label="Enable debug mode (more verbose logging)", value=True)
with gr.Column():
test_button = gr.Button("πŸš€ Run Perplexity Test", variant="primary")
result = gr.Markdown()
gr.Markdown("""
### Tips:
- Check stderr logs in HF Spaces for detailed debugging information
- If evaluation succeeds but leaderboard doesn't update, try refreshing the page
- Example models to test: `openai-community/gpt2`, `EleutherAI/gpt-neo-1.3B`
""")
test_button.click(
run_perplexity_test,
[model_name, revision, precision],
[result, leaderboard]
)
demo.queue(default_concurrency_limit=5).launch()