Spaces:
Runtime error
Runtime error
import gradio as gr | |
from gradio_leaderboard import Leaderboard | |
import pandas as pd | |
from huggingface_hub import snapshot_download, create_repo | |
from huggingface_hub.utils import RepositoryNotFoundError | |
import os | |
from src.about import ( | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
COLS, | |
AutoEvalColumn, | |
fields, | |
) | |
from src.envs import API, EVAL_RESULTS_PATH, RESULTS_REPO, TOKEN, OWNER | |
from src.populate import get_leaderboard_df | |
from src.evaluation.dynamic_eval import run_dynamic_perplexity_eval | |
def init_leaderboard(dataframe): | |
if dataframe is None: | |
raise ValueError("Leaderboard DataFrame is None.") | |
print("\n=== Initializing Leaderboard ===", flush=True) | |
print(f"DataFrame shape: {dataframe.shape}", flush=True) | |
print(f"DataFrame columns: {dataframe.columns.tolist()}", flush=True) | |
return Leaderboard( | |
value=dataframe, | |
select_columns=[c.name for c in fields(AutoEvalColumn) if not c.hidden], | |
search_columns=[AutoEvalColumn.model.name], | |
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], | |
filter_columns=[ | |
AutoEvalColumn.model_type.name, | |
AutoEvalColumn.precision.name, | |
], | |
) | |
def refresh_leaderboard(): | |
import sys | |
import traceback | |
try: | |
sys.stderr.write("Refreshing leaderboard data...\n") | |
sys.stderr.flush() | |
# Get fresh leaderboard data | |
df = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS) | |
sys.stderr.write(f"Got DataFrame with shape: {df.shape}\n") | |
sys.stderr.write(f"DataFrame columns: {df.columns.tolist()}\n") | |
sys.stderr.flush() | |
# Check if DataFrame is valid for leaderboard | |
if df is None: | |
sys.stderr.write("DataFrame is None, cannot create leaderboard\n") | |
sys.stderr.flush() | |
raise ValueError("DataFrame is None") | |
if df.empty: | |
sys.stderr.write("DataFrame is empty, creating minimal valid DataFrame\n") | |
sys.stderr.flush() | |
# Create a minimal valid DataFrame that won't crash the leaderboard | |
import pandas as pd | |
empty_df = pd.DataFrame(columns=COLS) | |
# Add one dummy row to prevent leaderboard component from crashing | |
dummy_row = {col: 0 if col in BENCHMARK_COLS or col == AutoEvalColumn.average.name else "" for col in COLS} | |
dummy_row[AutoEvalColumn.model.name] = "No models evaluated yet" | |
dummy_row[AutoEvalColumn.model_type_symbol.name] = "?" | |
empty_df = pd.DataFrame([dummy_row]) | |
return init_leaderboard(empty_df) | |
sys.stderr.write("Creating leaderboard with valid DataFrame\n") | |
sys.stderr.flush() | |
return init_leaderboard(df) | |
except Exception as e: | |
error_msg = str(e) | |
traceback_str = traceback.format_exc() | |
sys.stderr.write(f"Error in refresh_leaderboard: {error_msg}\n") | |
sys.stderr.write(f"Traceback: {traceback_str}\n") | |
sys.stderr.flush() | |
raise | |
def run_perplexity_test(model_name, revision, precision): | |
"""Run perplexity evaluation on demand.""" | |
import sys | |
import traceback | |
if not model_name: | |
return "Please enter a model name.", None | |
try: | |
# Use stderr for more reliable logging in HF Spaces | |
sys.stderr.write(f"\n=== Running Perplexity Test ===\n") | |
sys.stderr.write(f"Model: {model_name}\n") | |
sys.stderr.write(f"Revision: {revision}\n") | |
sys.stderr.write(f"Precision: {precision}\n") | |
sys.stderr.flush() | |
success, result = run_dynamic_perplexity_eval(model_name, revision, precision) | |
sys.stderr.write(f"Evaluation result - Success: {success}, Result: {result}\n") | |
sys.stderr.flush() | |
if success: | |
try: | |
# Try to refresh leaderboard | |
sys.stderr.write("Attempting to refresh leaderboard...\n") | |
sys.stderr.flush() | |
new_leaderboard = refresh_leaderboard() | |
sys.stderr.write("Leaderboard refresh successful\n") | |
sys.stderr.flush() | |
return f"β Perplexity evaluation completed!\nPerplexity: {result:.4f}\n\nResults saved to leaderboard.", new_leaderboard | |
except Exception as refresh_error: | |
# If leaderboard refresh fails, still show success but don't update leaderboard | |
error_msg = str(refresh_error) | |
traceback_str = traceback.format_exc() | |
sys.stderr.write(f"Leaderboard refresh failed: {error_msg}\n") | |
sys.stderr.write(f"Traceback: {traceback_str}\n") | |
sys.stderr.flush() | |
return f"β Perplexity evaluation completed!\nPerplexity: {result:.4f}\n\nβ οΈ Results saved but leaderboard refresh failed: {error_msg}\n\nPlease refresh the page to see updated results.", None | |
else: | |
return f"β Evaluation failed: {result}", None | |
except Exception as e: | |
error_msg = str(e) | |
traceback_str = traceback.format_exc() | |
sys.stderr.write(f"Critical error in run_perplexity_test: {error_msg}\n") | |
sys.stderr.write(f"Traceback: {traceback_str}\n") | |
sys.stderr.flush() | |
return f"β Critical error: {error_msg}", None | |
# Initialize results repository and directory | |
try: | |
# Try to download existing repository | |
try: | |
snapshot_download( | |
repo_id=RESULTS_REPO, | |
local_dir=EVAL_RESULTS_PATH, | |
repo_type="dataset", | |
tqdm_class=None, | |
etag_timeout=30, | |
token=TOKEN | |
) | |
except RepositoryNotFoundError: | |
# Create the repository if it doesn't exist | |
print(f"Creating new results repository: {RESULTS_REPO}") | |
create_repo( | |
repo_id=RESULTS_REPO, | |
repo_type="dataset", | |
private=False, | |
token=TOKEN | |
) | |
# Create local directory | |
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True) | |
except Exception as e: | |
print(f"Error initializing results: {e}") | |
# Ensure local directory exists even if repo operations fail | |
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True) | |
# Get initial leaderboard data | |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS) | |
# Create the Gradio interface | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π Leaderboard", elem_id="leaderboard-tab", id=0): | |
leaderboard = init_leaderboard(LEADERBOARD_DF) | |
with gr.TabItem("π About", elem_id="about-tab", id=1): | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
with gr.TabItem("π§ͺ Test Model", elem_id="test-model-tab", id=2): | |
gr.Markdown("## Run Perplexity Test\n\nTest any Hugging Face model for perplexity evaluation.") | |
with gr.Row(): | |
with gr.Column(): | |
model_name = gr.Textbox(label="Model name", placeholder="openai-community/gpt2") | |
revision = gr.Textbox(label="Revision", placeholder="main", value="main") | |
precision = gr.Dropdown( | |
choices=["float16", "bfloat16"], | |
label="Precision", | |
value="float16" | |
) | |
debug_mode = gr.Checkbox(label="Enable debug mode (more verbose logging)", value=True) | |
with gr.Column(): | |
test_button = gr.Button("π Run Perplexity Test", variant="primary") | |
result = gr.Markdown() | |
gr.Markdown(""" | |
### Tips: | |
- Check stderr logs in HF Spaces for detailed debugging information | |
- If evaluation succeeds but leaderboard doesn't update, try refreshing the page | |
- Example models to test: `openai-community/gpt2`, `EleutherAI/gpt-neo-1.3B` | |
""") | |
test_button.click( | |
run_perplexity_test, | |
[model_name, revision, precision], | |
[result, leaderboard] | |
) | |
demo.queue(default_concurrency_limit=5).launch() |