Spaces:
Runtime error
Runtime error
import pandas as pd | |
import sys | |
from src.display.formatting import has_no_nan_values, make_clickable_model | |
from src.display.utils import AutoEvalColumn | |
from src.leaderboard.read_evals import get_raw_eval_results | |
def get_leaderboard_df(results_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: | |
"""Creates a dataframe from all the individual experiment results""" | |
try: | |
sys.stderr.write("\n=== Starting leaderboard creation ===\n") | |
sys.stderr.write(f"Looking for results in: {results_path}\n") | |
sys.stderr.write(f"Expected columns: {cols}\n") | |
sys.stderr.write(f"Benchmark columns: {benchmark_cols}\n") | |
sys.stderr.flush() | |
raw_data = get_raw_eval_results(results_path) | |
sys.stderr.write(f"\nFound {len(raw_data)} raw results\n") | |
sys.stderr.flush() | |
all_data_json = [] | |
for i, v in enumerate(raw_data): | |
try: | |
data_dict = v.to_dict() | |
all_data_json.append(data_dict) | |
sys.stderr.write(f"Successfully processed result {i+1}/{len(raw_data)}: {v.full_model}\n") | |
sys.stderr.flush() | |
except Exception as e: | |
sys.stderr.write(f"Error processing result {i+1}/{len(raw_data)} ({v.full_model}): {e}\n") | |
sys.stderr.flush() | |
continue | |
sys.stderr.write(f"\nConverted to {len(all_data_json)} JSON records\n") | |
sys.stderr.flush() | |
if all_data_json: | |
sys.stderr.write("Sample record keys: " + str(list(all_data_json[0].keys())) + "\n") | |
sys.stderr.flush() | |
if not all_data_json: | |
sys.stderr.write("\nNo data found, creating empty DataFrame\n") | |
sys.stderr.flush() | |
empty_df = pd.DataFrame(columns=cols) | |
# Ensure correct column types | |
empty_df[AutoEvalColumn.average.name] = pd.Series(dtype=float) | |
for col in benchmark_cols: | |
empty_df[col] = pd.Series(dtype=float) | |
return empty_df | |
df = pd.DataFrame.from_records(all_data_json) | |
sys.stderr.write("\nCreated DataFrame with columns: " + str(df.columns.tolist()) + "\n") | |
sys.stderr.write("DataFrame shape: " + str(df.shape) + "\n") | |
sys.stderr.flush() | |
try: | |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False) | |
sys.stderr.write("\nSorted DataFrame by average\n") | |
sys.stderr.flush() | |
except KeyError as e: | |
sys.stderr.write(f"\nError sorting DataFrame: {e}\n") | |
sys.stderr.write("Available columns: " + str(df.columns.tolist()) + "\n") | |
sys.stderr.flush() | |
try: | |
df = df[cols].round(decimals=2) | |
sys.stderr.write("\nSelected and rounded columns\n") | |
sys.stderr.flush() | |
except KeyError as e: | |
sys.stderr.write(f"\nError selecting columns: {e}\n") | |
sys.stderr.write("Requested columns: " + str(cols) + "\n") | |
sys.stderr.write("Available columns: " + str(df.columns.tolist()) + "\n") | |
sys.stderr.flush() | |
# Create empty DataFrame with correct structure | |
empty_df = pd.DataFrame(columns=cols) | |
empty_df[AutoEvalColumn.average.name] = pd.Series(dtype=float) | |
for col in benchmark_cols: | |
empty_df[col] = pd.Series(dtype=float) | |
return empty_df | |
# filter out if perplexity hasn't been evaluated | |
df = df[has_no_nan_values(df, benchmark_cols)] | |
sys.stderr.write("\nFinal DataFrame shape after filtering: " + str(df.shape) + "\n") | |
sys.stderr.write("Final columns: " + str(df.columns.tolist()) + "\n") | |
sys.stderr.flush() | |
return df | |
except Exception as e: | |
sys.stderr.write(f"\nCritical error in get_leaderboard_df: {e}\n") | |
import traceback | |
sys.stderr.write(f"Traceback: {traceback.format_exc()}\n") | |
sys.stderr.flush() | |
# Return empty DataFrame as fallback | |
empty_df = pd.DataFrame(columns=cols) | |
empty_df[AutoEvalColumn.average.name] = pd.Series(dtype=float) | |
for col in benchmark_cols: | |
empty_df[col] = pd.Series(dtype=float) | |
return empty_df | |