model_trace / app.py
Ahmed Ahmed
try again
1191811
import gradio as gr
import pandas as pd
from huggingface_hub import snapshot_download, create_repo
from huggingface_hub.utils import RepositoryNotFoundError
import os
from src.about import (
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
AutoEvalColumn,
fields,
)
from src.envs import API, EVAL_RESULTS_PATH, RESULTS_REPO, TOKEN, OWNER
from src.populate import get_leaderboard_df
def create_results_dataframe():
"""Create and return the results DataFrame for display"""
import sys
sys.stderr.write("\nπŸ“Š CREATE_RESULTS_DATAFRAME CALLED\n")
sys.stderr.flush()
df = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS)
sys.stderr.write(f"πŸ“‹ Retrieved leaderboard df: {df.shape if df is not None else 'None'}\n")
sys.stderr.flush()
if df is None or df.empty:
sys.stderr.write("⚠️ DataFrame is None or empty, returning empty DataFrame\n")
sys.stderr.flush()
# Return empty DataFrame with proper columns
return pd.DataFrame(columns=["Model", "Match P-Value", "Type", "Precision"])
sys.stderr.write(f"πŸ“Š Original DataFrame columns: {list(df.columns)}\n")
sys.stderr.flush()
# Check if required columns exist - only p-values matter
required_cols = [
AutoEvalColumn.model.name,
AutoEvalColumn.model_trace_p_value.name,
AutoEvalColumn.model_type.name,
AutoEvalColumn.precision.name,
]
missing_cols = [col for col in required_cols if col not in df.columns]
if missing_cols:
sys.stderr.write(f"⚠️ Missing columns in DataFrame: {missing_cols}\n")
sys.stderr.flush()
# Add missing columns with default values
for col in missing_cols:
if col == AutoEvalColumn.model_trace_p_value.name:
df[col] = None
sys.stderr.write(f"βž• Added {col} column with None values\n")
# Select and rename columns for display
try:
display_df = df[required_cols].copy()
sys.stderr.write(f"βœ… Selected columns successfully: {list(display_df.columns)}\n")
except Exception as e:
sys.stderr.write(f"πŸ’₯ Error selecting columns: {e}\n")
sys.stderr.flush()
return pd.DataFrame(columns=["Model", "Match P-Value", "Type", "Precision"])
# Rename columns for better display
display_df.columns = ["Model", "Match P-Value", "Type", "Precision"]
sys.stderr.write(f"🎯 Final display DataFrame shape: {display_df.shape}\n")
sys.stderr.write(f"🎯 Final columns: {list(display_df.columns)}\n")
# Check p-value column
if "Match P-Value" in display_df.columns:
p_value_stats = display_df["Match P-Value"].describe()
sys.stderr.write(f"πŸ“ˆ P-Value column stats:\n{p_value_stats}\n")
sys.stderr.flush()
return display_df
# Perplexity testing removed - we only focus on p-values now
# Initialize results repository and directory
try:
# Try to download existing repository
try:
snapshot_download(
repo_id=RESULTS_REPO,
local_dir=EVAL_RESULTS_PATH,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
token=TOKEN
)
except RepositoryNotFoundError:
# Create the repository if it doesn't exist
print(f"Creating new results repository: {RESULTS_REPO}")
create_repo(
repo_id=RESULTS_REPO,
repo_type="dataset",
private=False,
token=TOKEN
)
# Create local directory
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
except Exception as e:
print(f"Error initializing results: {e}")
# Ensure local directory exists even if repo operations fail
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
# Initialize allowed models
import sys
from src.evaluation.initialize_models import initialize_allowed_models
sys.stderr.write("\nπŸš€ STARTING GRADIO APP INITIALIZATION\n")
sys.stderr.write("πŸ“Š Initializing allowed models...\n")
sys.stderr.flush()
# Initialize the allowed models
initialize_allowed_models()
sys.stderr.write("πŸ“Š Creating initial results DataFrame...\n")
sys.stderr.flush()
RESULTS_DF = create_results_dataframe()
sys.stderr.write(f"βœ… Initial DataFrame created with shape: {RESULTS_DF.shape}\n")
sys.stderr.write(f"πŸ“‹ Columns: {list(RESULTS_DF.columns)}\n")
sys.stderr.flush()
# Create the Gradio interface
sys.stderr.write("🎨 Creating Gradio interface...\n")
sys.stderr.flush()
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("πŸ… Results", elem_id="results-tab", id=0):
gr.Markdown("## Model Evaluation Results")
results_table = gr.DataFrame(
value=RESULTS_DF,
headers=["Model", "Match P-Value", "Type", "Precision"],
interactive=False,
wrap=False
)
with gr.TabItem("πŸ“ About", elem_id="about-tab", id=1):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("πŸ”¬ Analysis", elem_id="analysis-tab", id=2):
gr.Markdown("## Model Tracing Analysis\n\nP-values are computed automatically for all supported models.")
gr.Markdown("""
### Current Analysis Status:
- **P-values are computed automatically** using the model tracing pipeline
- **Lower p-values indicate higher structural similarity** to Llama-2-7B
- **Analysis compares neuron organization** across transformer layers
- **Results appear in the main table** once computation is complete
### Supported Models:
- `lmsys/vicuna-7b-v1.5` - Vicuna 7B v1.5
- `ibm-granite/granite-7b-base` - IBM Granite 7B Base
- `EleutherAI/llemma_7b` - LLeMa 7B
### How it works:
1. Models are automatically analyzed against Llama-2-7B base
2. Match statistic with alignment is computed
3. P-values indicate structural similarity preservation
4. Results appear in the main Results tab
""")
sys.stderr.write("🎯 GRADIO INTERFACE SETUP COMPLETE\n")
sys.stderr.write("πŸš€ LAUNCHING GRADIO APP WITH MODEL TRACING ANALYSIS\n")
sys.stderr.write("πŸ“Š Features enabled:\n")
sys.stderr.write(" - Model trace p-value computation (vs Llama-2-7B base)\n")
sys.stderr.write(" - Match statistic with alignment\n")
sys.stderr.write(" - Structural similarity analysis\n")
sys.stderr.write("πŸŽ‰ Ready to display p-values!\n")
sys.stderr.flush()
demo.queue(default_concurrency_limit=5).launch()