Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
from huggingface_hub import snapshot_download, create_repo | |
from huggingface_hub.utils import RepositoryNotFoundError | |
import os | |
from src.about import ( | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
COLS, | |
AutoEvalColumn, | |
fields, | |
) | |
from src.envs import API, EVAL_RESULTS_PATH, RESULTS_REPO, TOKEN, OWNER | |
from src.populate import get_leaderboard_df | |
def create_results_dataframe(): | |
"""Create and return the results DataFrame for display""" | |
import sys | |
sys.stderr.write("\nπ CREATE_RESULTS_DATAFRAME CALLED\n") | |
sys.stderr.flush() | |
df = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS) | |
sys.stderr.write(f"π Retrieved leaderboard df: {df.shape if df is not None else 'None'}\n") | |
sys.stderr.flush() | |
if df is None or df.empty: | |
sys.stderr.write("β οΈ DataFrame is None or empty, returning empty DataFrame\n") | |
sys.stderr.flush() | |
# Return empty DataFrame with proper columns | |
return pd.DataFrame(columns=["Model", "Match P-Value", "Type", "Precision"]) | |
sys.stderr.write(f"π Original DataFrame columns: {list(df.columns)}\n") | |
sys.stderr.flush() | |
# Check if required columns exist - only p-values matter | |
required_cols = [ | |
AutoEvalColumn.model.name, | |
AutoEvalColumn.model_trace_p_value.name, | |
AutoEvalColumn.model_type.name, | |
AutoEvalColumn.precision.name, | |
] | |
missing_cols = [col for col in required_cols if col not in df.columns] | |
if missing_cols: | |
sys.stderr.write(f"β οΈ Missing columns in DataFrame: {missing_cols}\n") | |
sys.stderr.flush() | |
# Add missing columns with default values | |
for col in missing_cols: | |
if col == AutoEvalColumn.model_trace_p_value.name: | |
df[col] = None | |
sys.stderr.write(f"β Added {col} column with None values\n") | |
# Select and rename columns for display | |
try: | |
display_df = df[required_cols].copy() | |
sys.stderr.write(f"β Selected columns successfully: {list(display_df.columns)}\n") | |
except Exception as e: | |
sys.stderr.write(f"π₯ Error selecting columns: {e}\n") | |
sys.stderr.flush() | |
return pd.DataFrame(columns=["Model", "Match P-Value", "Type", "Precision"]) | |
# Rename columns for better display | |
display_df.columns = ["Model", "Match P-Value", "Type", "Precision"] | |
sys.stderr.write(f"π― Final display DataFrame shape: {display_df.shape}\n") | |
sys.stderr.write(f"π― Final columns: {list(display_df.columns)}\n") | |
# Check p-value column | |
if "Match P-Value" in display_df.columns: | |
p_value_stats = display_df["Match P-Value"].describe() | |
sys.stderr.write(f"π P-Value column stats:\n{p_value_stats}\n") | |
sys.stderr.flush() | |
return display_df | |
# Perplexity testing removed - we only focus on p-values now | |
# Initialize results repository and directory | |
try: | |
# Try to download existing repository | |
try: | |
snapshot_download( | |
repo_id=RESULTS_REPO, | |
local_dir=EVAL_RESULTS_PATH, | |
repo_type="dataset", | |
tqdm_class=None, | |
etag_timeout=30, | |
token=TOKEN | |
) | |
except RepositoryNotFoundError: | |
# Create the repository if it doesn't exist | |
print(f"Creating new results repository: {RESULTS_REPO}") | |
create_repo( | |
repo_id=RESULTS_REPO, | |
repo_type="dataset", | |
private=False, | |
token=TOKEN | |
) | |
# Create local directory | |
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True) | |
except Exception as e: | |
print(f"Error initializing results: {e}") | |
# Ensure local directory exists even if repo operations fail | |
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True) | |
# Initialize allowed models | |
import sys | |
from src.evaluation.initialize_models import initialize_allowed_models | |
sys.stderr.write("\nπ STARTING GRADIO APP INITIALIZATION\n") | |
sys.stderr.write("π Initializing allowed models...\n") | |
sys.stderr.flush() | |
# Initialize the allowed models | |
initialize_allowed_models() | |
sys.stderr.write("π Creating initial results DataFrame...\n") | |
sys.stderr.flush() | |
RESULTS_DF = create_results_dataframe() | |
sys.stderr.write(f"β Initial DataFrame created with shape: {RESULTS_DF.shape}\n") | |
sys.stderr.write(f"π Columns: {list(RESULTS_DF.columns)}\n") | |
sys.stderr.flush() | |
# Create the Gradio interface | |
sys.stderr.write("π¨ Creating Gradio interface...\n") | |
sys.stderr.flush() | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π Results", elem_id="results-tab", id=0): | |
gr.Markdown("## Model Evaluation Results") | |
results_table = gr.DataFrame( | |
value=RESULTS_DF, | |
headers=["Model", "Match P-Value", "Type", "Precision"], | |
interactive=False, | |
wrap=False | |
) | |
with gr.TabItem("π About", elem_id="about-tab", id=1): | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
with gr.TabItem("π¬ Analysis", elem_id="analysis-tab", id=2): | |
gr.Markdown("## Model Tracing Analysis\n\nP-values are computed automatically for all supported models.") | |
gr.Markdown(""" | |
### Current Analysis Status: | |
- **P-values are computed automatically** using the model tracing pipeline | |
- **Lower p-values indicate higher structural similarity** to Llama-2-7B | |
- **Analysis compares neuron organization** across transformer layers | |
- **Results appear in the main table** once computation is complete | |
### Supported Models: | |
- `lmsys/vicuna-7b-v1.5` - Vicuna 7B v1.5 | |
- `ibm-granite/granite-7b-base` - IBM Granite 7B Base | |
- `EleutherAI/llemma_7b` - LLeMa 7B | |
### How it works: | |
1. Models are automatically analyzed against Llama-2-7B base | |
2. Match statistic with alignment is computed | |
3. P-values indicate structural similarity preservation | |
4. Results appear in the main Results tab | |
""") | |
sys.stderr.write("π― GRADIO INTERFACE SETUP COMPLETE\n") | |
sys.stderr.write("π LAUNCHING GRADIO APP WITH MODEL TRACING ANALYSIS\n") | |
sys.stderr.write("π Features enabled:\n") | |
sys.stderr.write(" - Model trace p-value computation (vs Llama-2-7B base)\n") | |
sys.stderr.write(" - Match statistic with alignment\n") | |
sys.stderr.write(" - Structural similarity analysis\n") | |
sys.stderr.write("π Ready to display p-values!\n") | |
sys.stderr.flush() | |
demo.queue(default_concurrency_limit=5).launch() |