File size: 5,082 Bytes
f9720a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import pandas as pd
import statsmodels.api as sm
import streamlit as st
from datetime import datetime
import os

# ---- App title ----
st.title("Mini Stata - Simplified Version")

# ---- Student login ----
st.subheader("Student Login")
student_name = st.text_input("Enter your name:")
student_id = st.text_input("Enter your student ID:")

if student_name and student_id:
    logfile = f"log_{student_id}.csv"

    # Ensure log file exists
    if not os.path.exists(logfile):
        pd.DataFrame(columns=["timestamp", "student_name", "student_id", "command", "result"]).to_csv(logfile, index=False)

    st.success(f"Logged in as {student_name} (ID: {student_id})")

    # ---- File upload ----
    uploaded_file = st.file_uploader("Upload CSV file", type=["csv"])
    if uploaded_file is not None:
        df = pd.read_csv(uploaded_file)
        st.success("File uploaded successfully!")
    else:
        st.info("No file uploaded. Using default sample dataset.")
        df = pd.DataFrame({
            "mpg": [21, 22, 18, 30],
            "weight": [2500, 2800, 3200, 2100],
            "cyl": [4, 4, 6, 4],
            "horsepower": [90, 95, 110, 80]
        })

    # ---- summarize ----
    def summarize(var=None):
        try:
            if var is None:
                return df.describe().T
            elif var in df.columns:
                return df[var].describe().to_frame().T
            else:
                return f"Variable '{var}' not found."
        except Exception as e:
            return f"Error in summarize: {e}"

    # ---- browse ----
    def browse(n=None):
        try:
            if n is None:
                return df
            return df.head(n)
        except Exception as e:
            return f"Error in browse: {e}"

    # ---- tab ----
    def tab(var):
        try:
            if var not in df.columns:
                return f"Variable '{var}' not found."
            return df[var].value_counts().to_frame("Frequency")
        except Exception as e:
            return f"Error in tab: {e}"

    # ---- reg (simplified like Stata) ----
    def reg(dep_var, indep_vars):
        try:
            if dep_var not in df.columns:
                return f"Dependent variable '{dep_var}' not found."
            for v in indep_vars:
                if v not in df.columns:
                    return f"Independent variable '{v}' not found."

            X = sm.add_constant(df[indep_vars])
            y = df[dep_var]
            model = sm.OLS(y, X).fit()

            # Create clean results table
            results_table = pd.DataFrame({
                'Variable': model.params.index,
                'Coef.': model.params.values.round(4),
                'Std. Err.': model.bse.values.round(4),
                't': model.tvalues.values.round(3),
                'P>|t|': model.pvalues.values.round(3)
            })

            # Display concise summary
            summary_stats = f"Number of obs = {int(model.nobs)}    R-squared = {model.rsquared:.3f}"
            return results_table, summary_stats
        except Exception as e:
            return f"Error in regression: {e}"

    # ---- Command parser ----
    def run_command(cmd):
        parts = cmd.strip().split()
        if not parts:
            return "No command entered."
        command = parts[0].lower()
        args = parts[1:]

        if command == "summarize":
            return summarize(args[0]) if args else summarize()
        elif command == "browse":
            return browse()
        elif command == "tab":
            if not args:
                return "Usage: tab varname"
            return tab(args[0])
        elif command == "reg":
            if len(args) < 2:
                return "Usage: reg depvar indepvar1 indepvar2 ..."
            return reg(args[0], args[1:])
        else:
            return f"Unknown command: '{command}'. Available commands: summarize, browse, tab, reg."

    # ---- Interface ----
    st.markdown("""
    ### Available commands
    - `summarize`
    - `summarize mpg`
    - `browse`
    - `tab cyl`
    - `reg mpg weight horsepower`
    """)

    cmd = st.text_input("Enter command:")

    if st.button("Run"):
        result = run_command(cmd)

        # Log
        log_entry = {
            "timestamp": datetime.now().isoformat(),
            "student_name": student_name,
            "student_id": student_id,
            "command": cmd,
            "result": str(result)[:500]
        }
        pd.DataFrame([log_entry]).to_csv(logfile, mode="a", header=False, index=False)

        # Display result
        if isinstance(result, tuple):  # regression output
            table, stats = result
            st.text(stats)
            st.table(table)
        elif isinstance(result, pd.DataFrame):
            st.dataframe(result)
        else:
            st.text(result)

    if st.button("Download My Log"):
        with open(logfile, "r") as f:
            st.download_button("Click to download", f, file_name=logfile, mime="text/csv")

else:
    st.warning("Please enter name and student ID to start.")