Spaces:
Runtime error
Runtime error
File size: 20,725 Bytes
14e4843 5e18985 5272ca6 9997570 5272ca6 3862c96 a67de47 16fe52a 5272ca6 14e4843 5272ca6 b689423 5272ca6 b689423 2a5ac42 a67de47 3862c96 a67de47 b689423 3862c96 b689423 3862c96 b689423 2a5ac42 b689423 3862c96 be8114c 3862c96 b689423 3862c96 b689423 2a5ac42 b689423 3862c96 be8114c 3862c96 b689423 3862c96 b689423 2a5ac42 b689423 3862c96 b689423 3862c96 b689423 3862c96 b689423 3862c96 b689423 2decc9c 3862c96 6eeb754 3862c96 a67de47 2decc9c b689423 5272ca6 09aa54c cf58362 545e209 5272ca6 9997570 5272ca6 3862c96 5272ca6 9997570 5272ca6 cf58362 16fe52a f041cb6 a67de47 5272ca6 3862c96 16fe52a f041cb6 423d316 3862c96 16fe52a 3862c96 f041cb6 3862c96 f041cb6 3862c96 f041cb6 16fe52a 3862c96 b5a93bb 3862c96 b5a93bb f041cb6 3862c96 1d0cc7f f041cb6 b689423 b53c40c b689423 3862c96 f041cb6 3862c96 f041cb6 3862c96 b689423 3862c96 423d316 3862c96 b689423 f041cb6 3862c96 f041cb6 3862c96 8bdf0fb 3862c96 96415eb 3862c96 8610f75 3862c96 0c1bd90 8610f75 c36571d 0c1bd90 c36571d 0c1bd90 6b098b9 0c1bd90 3862c96 f5dc9b9 66eea76 16fe52a c36571d 3862c96 380021e 3862c96 380021e 16fe52a 66eea76 96415eb 0c1bd90 3862c96 8610f75 0c1bd90 66eea76 3862c96 66eea76 3862c96 6b098b9 3862c96 423d316 3862c96 939748f 66eea76 3862c96 423d316 8610f75 c36571d 3862c96 0c1bd90 3862c96 f041cb6 b778c8f f041cb6 3862c96 423d316 b5a93bb 3862c96 b5a93bb b53c40c d445bef b53c40c 3862c96 b53c40c 3862c96 b53c40c b689423 b53c40c 3862c96 6034c76 b53c40c 3862c96 b53c40c d445bef b689423 3862c96 b689423 3862c96 c36571d b689423 3862c96 b689423 3862c96 b689423 3862c96 b689423 3862c96 b5a93bb 3862c96 b689423 3862c96 f041cb6 3862c96 2a18e0a f041cb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
#!/usr/bin/env python
import os
import json
from typing import List, Tuple
os.environ["GRADIO_LANGUAGE"] = "en"
RESULT_DIR = os.environ.get("MOECAP_RESULT_DIR")
if not RESULT_DIR:
# For testing purposes, you can uncomment the line below:
# RESULT_DIR = "generic_result_dir"
# If you are running locally without this env var,
# ensure you handle this error or set the var.
pass
import gradio as gr
import pandas as pd
from datasets import load_dataset
import plotly.graph_objects as go
def f2(x):
"""Format to 2 decimal places if number, else return as-is."""
if isinstance(x, (int, float)):
return round(float(x), 2)
return x
def normalize(val, vmin, vmax, baseline=20):
"""Normalize value to baseline-100 range."""
if vmax == vmin:
return baseline + 40
return baseline + (val - vmin) / (vmax - vmin) * (100 - baseline)
def normalize_cost(val, max_tick, baseline=20):
"""Normalize cost (lower is better)."""
if max_tick == 0:
return baseline + 40
return baseline + (max_tick - min(val, max_tick)) / max_tick * (100 - baseline)
def generate_radar_plot(selected_rows_data: List[dict]) -> go.Figure:
"""Generate a CAP radar plot from selected rows."""
layout_settings = dict(
height=750,
autosize=True,
margin=dict(t=80, b=100, l=80, r=80),
paper_bgcolor='white',
plot_bgcolor='white',
)
if not selected_rows_data or len(selected_rows_data) == 0:
fig = go.Figure()
fig.add_annotation(
text="Please select 1-3 rows from the table to generate radar plot",
xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False,
font=dict(size=16, color="black"), # Ensure text is black
xanchor='center', yanchor='middle'
)
fig.update_layout(xaxis=dict(visible=False), yaxis=dict(visible=False), **layout_settings)
return fig
if len(selected_rows_data) > 3:
fig = go.Figure()
fig.add_annotation(
text="Error: Please select no more than 3 rows!",
xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False,
font=dict(size=18, color="red"),
xanchor='center', yanchor='middle'
)
fig.update_layout(xaxis=dict(visible=False), yaxis=dict(visible=False), **layout_settings)
return fig
datasets = [row.get('Dataset', '') for row in selected_rows_data]
unique_datasets = set(datasets)
if len(unique_datasets) > 1:
fig = go.Figure()
fig.add_annotation(
text="Error: Please select rows from the same dataset!",
xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False,
font=dict(size=18, color="red"),
xanchor='center', yanchor='middle'
)
fig.update_layout(xaxis=dict(visible=False), yaxis=dict(visible=False), **layout_settings)
return fig
dataset_name = datasets[0] if datasets else "Unknown"
data = {}
for row in selected_rows_data:
model_name = row.get('Model', 'Unknown')
if isinstance(model_name, str) and 'href' in model_name:
try:
model_name = model_name.split('>', 1)[1].split('<', 1)[0]
except:
pass
method = row.get('Method', '')
if isinstance(model_name, str) and '/' in model_name:
legend_name = model_name.split('/')[-1]
else:
legend_name = str(model_name)
if method and method not in ['Unknown', '-', '']:
legend_name = f"{legend_name}-{method}"
acc = row.get('Accuracy(%)', 0)
cost = row.get('Cost($)', 0)
throughput = row.get('Decoding T/s', 0)
try:
acc = float(acc) if acc not in [None, '-', ''] else 0
cost = float(cost) if cost not in [None, '-', ''] else 0
throughput = float(throughput) if throughput not in [None, '-', ''] else 0
except:
acc, cost, throughput = 0, 0, 0
data[legend_name] = {
'accuracy': acc / 100.0 if acc > 1 else acc,
'cost': cost,
'throughput': throughput
}
throughputs = [v['throughput'] for v in data.values()]
costs = [v['cost'] for v in data.values()]
accs = [v['accuracy'] for v in data.values()]
tp_min, tp_max = (min(throughputs), max(throughputs)) if throughputs else (0, 1)
cost_max = max(costs) if costs else 1
acc_min, acc_max = (min(accs), 1.0) if accs else (0, 1)
baseline = 20
categories = ['Throughput (T/s)', 'Cost ($)', 'Accuracy', 'Throughput (T/s)']
fig = go.Figure()
for system, values in data.items():
raw_vals = [values['throughput'], values['cost'], values['accuracy']]
norm_vals = [
normalize(values['throughput'], tp_min, tp_max, baseline),
normalize_cost(values['cost'], cost_max, baseline),
normalize(values['accuracy'], acc_min, acc_max, baseline)
]
norm_vals += [norm_vals[0]]
hovertext = [
f"Throughput: {raw_vals[0]:.2f} T/s",
f"Cost: ${raw_vals[1]:.2f}",
f"Accuracy: {raw_vals[2]*100:.2f}%",
f"Throughput: {raw_vals[0]:.2f} T/s"
]
fig.add_trace(go.Scatterpolar(
r=norm_vals,
theta=categories,
fill='toself',
name=system,
text=hovertext,
hoverinfo='text+name',
line=dict(width=2)
))
fig.update_layout(
title=dict(text=f"CAP Radar Plot: {dataset_name}", x=0.5, xanchor='center', font=dict(size=20, color="black")),
polar=dict(
radialaxis=dict(
visible=True,
range=[0, 100],
tickfont=dict(size=12, color="black"),
gridcolor='lightgray', # Add this
linecolor='gray', # Add this
showline=True # Add this
),
angularaxis=dict(
tickfont=dict(size=14, color="black"),
rotation=90,
direction='clockwise',
gridcolor='lightgray', # Add this
linecolor='gray', # Add this
showline=True # Add this
),
bgcolor="white"
),
legend=dict(orientation='h', yanchor='bottom', y=-0.15, xanchor='center', x=0.5, font=dict(size=13, color="black")),
**layout_settings
)
return fig
def json_to_row(path: str, metrics: dict) -> dict:
model_name = metrics.get("model_name")
if not model_name:
model_name = "unknown-model"
dataset = metrics.get("dataset", "Unknown")
method = metrics.get("method", "Unknown")
precision = metrics.get("precision", "Unknown")
model_type = metrics.get("model_type", "Unknown")
e2e_s = metrics.get("e2e_s", None)
batch_size = metrics.get("batch_size", None)
gpu_type = metrics.get("gpu_type", "")
cost = metrics.get("cost", None)
em = metrics.get("exact_match")
correct = metrics.get("correct")
total = metrics.get("total")
if isinstance(correct, (int, float)) and isinstance(total, (int, float)) and total > 0:
acc = correct / total
else:
acc = em
def pct(x):
return round(x * 100, 2) if isinstance(x, (int, float)) else None
if isinstance(model_name, str) and "/" in model_name:
hf_url = f"https://huggingface.co/{model_name}"
model_cell = f"<a href='{hf_url}' target='_blank' style='color: #0366d6; text-decoration: none;'>{model_name}</a>"
else:
model_cell = model_name
row = {
"Model": model_cell,
"Dataset": dataset,
"Method": method,
"Model type": model_type,
"Precision": precision,
"E2E(s)": f2(e2e_s),
"GPU": gpu_type,
"Accuracy(%)": pct(acc),
"Cost($)": cost,
"Decoding T/s": f2(metrics.get("decoding_throughput")),
"Prefill T/s": f2(metrics.get("prefill_tp")),
"Prefill<br>S-MBU(%)": pct(metrics.get("prefill_smbu")),
"Prefill<br>S-MFU(%)": pct(metrics.get("prefill_smfu")),
"Decoding<br>S-MBU(%)": pct(metrics.get("decoding_smbu")),
"Decoding<br>S-MFU(%)": pct(metrics.get("decoding_smfu")),
"TTFT(s)": f2(metrics.get("ttft")),
"TPOT(s)": f2(metrics.get("tpot")),
"Batch size": batch_size,
}
return row
def load_from_dir(dir_path: str, selected_tasks=None, selected_frameworks=None, selected_model_types=None, selected_precisions=None, search_keyword="", force_refresh=False):
if not dir_path:
return "<p style='color:black'>Result Directory not set.</p>", []
try:
pattern = f"hf://datasets/{dir_path}/**/*.json"
dl_mode = "force_redownload" if force_refresh else None
print(f"Fetching from {pattern} (mode={dl_mode})...")
ds = load_dataset("json", data_files={"train": pattern}, split="train", download_mode=dl_mode)
except Exception as e:
print(f"Error loading dataset: {e}")
return "<p style='color:black'>No files loaded or Dataset not found.</p>", []
rows = []
for i, example in enumerate(ds):
metrics = example.get("metrics") or example.get("json") or example
rows.append(json_to_row(f"{dir_path}#{i}", metrics))
if not rows:
return "<p style='color:black'>No records found.</p>", []
df = pd.DataFrame(rows)
# --- Filtering Logic ---
# This logic is consistent: if a filter is provided, we ONLY keep rows
# where the column value is inside the selected list.
if selected_tasks:
df = df[df["Dataset"].astype(str).str.lower().isin([x.lower() for x in selected_tasks])]
if selected_frameworks:
df = df[df["Method"].astype(str).str.lower().isin([str(x).lower() for x in selected_frameworks])]
if selected_model_types:
df = df[df["Model type"].astype(str).str.lower().isin([str(x).lower() for x in selected_model_types])]
if selected_precisions:
df = df[df["Precision"].astype(str).str.lower().isin([str(x).lower() for x in selected_precisions])]
if search_keyword and search_keyword.strip():
df = df[df.astype(str).apply(lambda row: row.str.lower().str.contains(search_keyword.strip().lower()).any(), axis=1)]
if df.empty:
return "<p style='color:black'>No records found.</p>", []
df = df.fillna("-")
df.insert(0, 'Row #', range(len(df)))
table_html = f'<div class="table-container">{df.to_html(escape=False, index=False, classes="metrics-table")}</div>'
df_without_rownum = df.drop('Row #', axis=1)
return table_html, df_without_rownum.to_dict('records')
def auto_refresh_from_dir(dir_path, tasks, frameworks, types, precisions, search):
return load_from_dir(dir_path, tasks, frameworks, types, precisions, search, force_refresh=True)
def parse_and_generate_plot(df_data, indices_str):
if not indices_str or not indices_str.strip():
return generate_radar_plot([])
try:
indices = [int(idx.strip()) for idx in indices_str.split(',') if idx.strip()][:3]
selected_rows = [df_data[i] for i in indices if 0 <= i < len(df_data)]
return generate_radar_plot(selected_rows)
except:
return generate_radar_plot([])
def build_app() -> gr.Blocks:
# NUCLEAR CSS FIX: Overwrite all generic Gradio variables to force light mode
row_css = """
/* 1. FORCE LIGHT VARIABLES GLOBALLY */
:root, .gradio-container, body {
--body-background-fill: #f5f7fa !important;
--body-text-color: #374151 !important;
--background-fill-primary: #ffffff !important;
--background-fill-secondary: #f3f4f6 !important;
--border-color-primary: #e5e7eb !important;
--block-background-fill: #ffffff !important;
--block-label-text-color: #374151 !important;
--block-title-text-color: #1f2937 !important;
--input-background-fill: #ffffff !important;
--color-accent: #0366d6 !important;
/* Reset dark mode specific variables to light values */
--neutral-50: #f9fafb; --neutral-100: #f3f4f6; --neutral-200: #e5e7eb;
--neutral-300: #d1d5da; --neutral-400: #9ca3af; --neutral-500: #6b7280;
--neutral-600: #4b5563; --neutral-700: #374151; --neutral-800: #1f2937;
}
/* 2. RESET STANDARD CONTAINERS */
.gradio-container .block,
.gradio-container .panel,
.gradio-container .form {
background-color: white !important;
border-color: #e1e4e8 !important;
}
/* 3. SPECIFIC FIX FOR THE DARK "FILTERS" and "RADAR" SECTIONS */
.filter-section {
background-color: #ffffff !important;
border: 2px solid #e1e4e8 !important;
border-radius: 8px !important;
padding: 16px !important;
box-shadow: 0 2px 4px rgba(0,0,0,0.05) !important;
color: #24292e !important; /* Set default text color for the section */
}
/* Remove background color from text elements to prevent "dark blocks" */
.filter-section label,
.filter-section span,
.filter-section p {
background-color: transparent !important;
}
/* 4. BUTTON FIXES - TARGET BY ID FOR SPECIFICITY */
#gen_btn {
background-color: #0366d6 !important;
color: white !important;
border: none !important;
}
#gen_btn:hover {
opacity: 0.9;
}
/* 5. INPUTS & CHECKBOXES */
/* Re-apply white background to inputs specifically */
.filter-section input,
.filter-section textarea,
.filter-section select {
background-color: #ffffff !important;
border: 1px solid #d1d5da !important;
color: #24292e !important;
}
/* --- FIX FOR CHECKBOXES --- */
/* Use explicit styling for the checked state to ensure visibility */
.filter-section input[type="checkbox"] {
appearance: none !important;
-webkit-appearance: none !important;
width: 16px !important;
height: 16px !important;
background-color: white !important;
border: 1px solid #d1d5da !important;
border-radius: 3px !important;
position: relative !important;
cursor: pointer !important;
}
.filter-section input[type="checkbox"]:checked {
background-color: #0366d6 !important;
border-color: #0366d6 !important;
/* Draw the checkmark using an SVG data URI */
background-image: url("data:image/svg+xml,%3csvg viewBox='0 0 16 16' fill='white' xmlns='http://www.w3.org/2000/svg'%3e%3cpath d='M12.207 4.793a1 1 0 010 1.414l-5 5a1 1 0 01-1.414 0l-2-2a1 1 0 011.414-1.414L6.5 9.086l4.293-4.293a1 1 0 011.414 0z'/%3e%3c/svg%3e") !important;
background-size: 100% 100% !important;
background-position: center !important;
background-repeat: no-repeat !important;
}
.filter-section label span {
color: #24292e !important;
}
/* 6. SEARCH BOX */
.search-box {
background: white !important;
padding: 16px !important;
border-radius: 6px;
border: 2px solid #e1e4e8 !important;
margin-bottom: 16px;
}
/* 7. TABLE STYLING */
.table-container {
overflow-x: auto;
max-height: 75vh;
border: 2px solid #e1e4e8;
border-radius: 6px;
background: white !important;
}
table.metrics-table {
width: 100%; border-collapse: collapse; background: white !important;
}
table.metrics-table th, table.metrics-table td {
padding: 10px 14px; border: 1px solid #e1e4e8;
white-space: nowrap; font-size: 13px; color: #24292e !important;
}
table.metrics-table th {
background: #f6f8fa !important; font-weight: 600; position: sticky; top: 0;
}
.metrics-table th:first-child, .metrics-table td:first-child {
background-color: #f0f0f0 !important; text-align: center;
}
/* 8. PLOT CONTAINER - FORCE WHITE BACKGROUND */
.plot-container {
width: 100% !important;
background-color: white !important;
}
.plot-container > div, .plot-container .plotly {
background-color: white !important;
}
/* 9. LINKS */
a { color: #0366d6 !important; text-decoration: none; }
a:hover { text-decoration: underline; }
"""
with gr.Blocks(title="MoE-CAP Dashboard", css=row_css, theme=gr.themes.Default()) as demo:
gr.Markdown("# MoE-CAP Dashboard")
with gr.Row():
# Left Sidebar
with gr.Column(scale=2):
with gr.Group(elem_classes="search-box"):
search_input = gr.Textbox(label="π Search", placeholder="Search...", lines=1)
with gr.Group(elem_classes="filter-section"):
gr.Markdown("### ποΈ Filters")
dir_path = gr.State(RESULT_DIR)
task_filter = gr.CheckboxGroup(
label="π Tasks",
choices=[("GSM8K", "gsm8k"), ("LongBench", "longbench"), ("MMLU", "mmlu"), ("NuminaMath", "numinamath"), ("RULER", "ruler")],
value=["gsm8k", "longbench", "mmlu", "numinamath", "ruler"]
)
framework_filter = gr.CheckboxGroup(label="βοΈ Frameworks", choices=["sglang", "vllm"], value=["sglang", "vllm"])
model_type_filter = gr.CheckboxGroup(label="π€ Model Types", choices=["instruct", "thinking"], value=["instruct", "thinking"])
precision_filter = gr.CheckboxGroup(label="π― Precision", choices=["bfloat16", "fp8"], value=["bfloat16", "fp8"])
with gr.Accordion("π About Tasks & Metrics", open=True):
gr.Markdown(
"### Tasks\n- **GSM8K**, **LongBench**, **MMLU**, **NuminaMath**, **RULER**\n\n"
"### Metrics\n- **E2E(s)**: Latency | **Cost($)** | **T/s**: Throughput | **S-MBU/MFU**: Utilization | **TPOT**, **TTFT**,
elem_classes="info-section"
)
gr.Markdown(
"Github Repo: [https://github.com/Auto-CAP/MoE-CAP](https://github.com/Auto-CAP/MoE-CAP)"
elem_classes="info-section"
)
# Right Main Content
with gr.Column(scale=5):
leaderboard_output = gr.HTML(label="π Results")
with gr.Group(elem_classes="filter-section"):
gr.Markdown("### π CAP Radar Plot")
gr.Markdown("**How to use:** Look at the 'Row #' column in the table. Enter row numbers (e.g., 0,1,2) and click Generate.")
with gr.Row():
row_indices_input = gr.Textbox(label="Row Numbers", placeholder="0,1,2", scale=3)
# Added elem_id="gen_btn" here for specific CSS targeting
generate_btn = gr.Button("π― Generate", variant="primary", scale=1, elem_id="gen_btn")
radar_plot = gr.Plot(value=generate_radar_plot([]), elem_classes="plot-container")
# State & Events
df_data_state = gr.State([])
inputs = [dir_path, task_filter, framework_filter, model_type_filter, precision_filter, search_input]
demo.load(fn=auto_refresh_from_dir, inputs=inputs, outputs=[leaderboard_output, df_data_state])
search_input.change(fn=load_from_dir, inputs=inputs, outputs=[leaderboard_output, df_data_state])
task_filter.change(fn=load_from_dir, inputs=inputs, outputs=[leaderboard_output, df_data_state])
framework_filter.change(fn=load_from_dir, inputs=inputs, outputs=[leaderboard_output, df_data_state])
model_type_filter.change(fn=load_from_dir, inputs=inputs, outputs=[leaderboard_output, df_data_state])
precision_filter.change(fn=load_from_dir, inputs=inputs, outputs=[leaderboard_output, df_data_state])
generate_btn.click(fn=parse_and_generate_plot, inputs=[df_data_state, row_indices_input], outputs=[radar_plot])
gr.Timer(60.0).tick(fn=auto_refresh_from_dir, inputs=inputs, outputs=[leaderboard_output, df_data_state])
return demo
if __name__ == "__main__":
app = build_app()
app.launch() |