Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import torch | |
| import torch.nn.functional as F | |
| import transformers | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| from datasets import load_dataset | |
| import numpy as np | |
| import pandas as pd | |
| from io import StringIO | |
| st.title('Can I Patent This?') | |
| st.write("This model is tuned with all patent applications submitted in Jan 2016 in [the Harvard USPTO patent dataset](https://github.com/suzgunmirac/hupd)") | |
| tuple_of_choices = ('patent_number', 'title', 'background', 'summary', 'description') | |
| # steamlit form | |
| option = st.selectbox('Which other sections would you like to view?', tuple_of_choices) | |
| st.write('You selected:', option) | |
| form = st.form(key='sentiment-form') | |
| user_input = form.text_area(label = 'Enter your text', value = "I love steamlit and hugging face!") | |
| submit = form.form_submit_button('Submit') | |
| model_name = "ayethuzar/tuned-for-patentability" | |
| model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| test = [user_input] | |
| if submit: | |
| batch = tokenizer(test, padding = True, truncation = True, max_length = 512, return_tensors = "pt") | |
| with torch.no_grad(): | |
| outputs = model(**batch) | |
| #st.write(outputs) | |
| predictions = F.softmax(outputs.logits, dim = 1) | |
| result = "Patentability Score: " + str(predictions.numpy()[0][1]) | |
| html_str = f"""<style>p.a {{font: bold {28}px Courier;color:#1D5D9B;}}</style><p class="a">{result}</p>""" | |
| st.markdown(html_str, unsafe_allow_html=True) | |