multimodalart HF Staff commited on
Commit
12a14a2
·
verified ·
1 Parent(s): d9dd23e

Delete kontext_pipeline.py

Browse files
Files changed (1) hide show
  1. kontext_pipeline.py +0 -1088
kontext_pipeline.py DELETED
@@ -1,1088 +0,0 @@
1
- import inspect
2
- from typing import Any, Callable, Dict, List, Optional, Union
3
-
4
- import numpy as np
5
- import torch
6
- from transformers import (
7
- CLIPImageProcessor,
8
- CLIPTextModel,
9
- CLIPTokenizer,
10
- CLIPVisionModelWithProjection,
11
- T5EncoderModel,
12
- T5TokenizerFast,
13
- )
14
-
15
- from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
16
- from diffusers.loaders import (
17
- FluxIPAdapterMixin,
18
- FluxLoraLoaderMixin,
19
- FromSingleFileMixin,
20
- TextualInversionLoaderMixin,
21
- )
22
- from diffusers.models import AutoencoderKL, FluxTransformer2DModel
23
- from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
24
- from diffusers.utils import (
25
- USE_PEFT_BACKEND,
26
- is_torch_xla_available,
27
- logging,
28
- replace_example_docstring,
29
- scale_lora_layers,
30
- unscale_lora_layers,
31
- )
32
-
33
- from diffusers.utils.torch_utils import randn_tensor
34
- from diffusers import DiffusionPipeline
35
-
36
- from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
37
-
38
-
39
-
40
- if is_torch_xla_available():
41
- import torch_xla.core.xla_model as xm
42
-
43
- XLA_AVAILABLE = True
44
- else:
45
- XLA_AVAILABLE = False
46
-
47
-
48
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
49
-
50
- EXAMPLE_DOC_STRING = """
51
- Examples:
52
- ```py
53
- # TODO
54
- ```
55
- """
56
-
57
-
58
- PREFERRED_KONTEXT_RESOLUTIONS = [
59
- (672, 1568),
60
- (688, 1504),
61
- (720, 1456),
62
- (752, 1392),
63
- (800, 1328),
64
- (832, 1248),
65
- (880, 1184),
66
- (944, 1104),
67
- (1024, 1024),
68
- (1104, 944),
69
- (1184, 880),
70
- (1248, 832),
71
- (1328, 800),
72
- (1392, 752),
73
- (1456, 720),
74
- (1504, 688),
75
- (1568, 672),
76
- ]
77
-
78
-
79
- def calculate_shift(
80
- image_seq_len,
81
- base_seq_len: int = 256,
82
- max_seq_len: int = 4096,
83
- base_shift: float = 0.5,
84
- max_shift: float = 1.15,
85
- ):
86
- m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
87
- b = base_shift - m * base_seq_len
88
- mu = image_seq_len * m + b
89
- return mu
90
-
91
-
92
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
93
- def retrieve_timesteps(
94
- scheduler,
95
- num_inference_steps: Optional[int] = None,
96
- device: Optional[Union[str, torch.device]] = None,
97
- timesteps: Optional[List[int]] = None,
98
- sigmas: Optional[List[float]] = None,
99
- **kwargs,
100
- ):
101
- r"""
102
- Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
103
- custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
104
-
105
- Args:
106
- scheduler (`SchedulerMixin`):
107
- The scheduler to get timesteps from.
108
- num_inference_steps (`int`):
109
- The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
110
- must be `None`.
111
- device (`str` or `torch.device`, *optional*):
112
- The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
113
- timesteps (`List[int]`, *optional*):
114
- Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
115
- `num_inference_steps` and `sigmas` must be `None`.
116
- sigmas (`List[float]`, *optional*):
117
- Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
118
- `num_inference_steps` and `timesteps` must be `None`.
119
-
120
- Returns:
121
- `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
122
- second element is the number of inference steps.
123
- """
124
- if timesteps is not None and sigmas is not None:
125
- raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
126
- if timesteps is not None:
127
- accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
128
- if not accepts_timesteps:
129
- raise ValueError(
130
- f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
131
- f" timestep schedules. Please check whether you are using the correct scheduler."
132
- )
133
- scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
134
- timesteps = scheduler.timesteps
135
- num_inference_steps = len(timesteps)
136
- elif sigmas is not None:
137
- accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
138
- if not accept_sigmas:
139
- raise ValueError(
140
- f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
141
- f" sigmas schedules. Please check whether you are using the correct scheduler."
142
- )
143
- scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
144
- timesteps = scheduler.timesteps
145
- num_inference_steps = len(timesteps)
146
- else:
147
- scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
148
- timesteps = scheduler.timesteps
149
- return timesteps, num_inference_steps
150
-
151
-
152
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
153
- def retrieve_latents(
154
- encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
155
- ):
156
- if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
157
- return encoder_output.latent_dist.sample(generator)
158
- elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
159
- return encoder_output.latent_dist.mode()
160
- elif hasattr(encoder_output, "latents"):
161
- return encoder_output.latents
162
- else:
163
- raise AttributeError("Could not access latents of provided encoder_output")
164
-
165
-
166
- class FluxKontextPipeline(
167
- DiffusionPipeline,
168
- FluxLoraLoaderMixin,
169
- FromSingleFileMixin,
170
- TextualInversionLoaderMixin,
171
- FluxIPAdapterMixin,
172
- ):
173
- r"""
174
- The Flux Kontext pipeline for text-to-image generation.
175
-
176
- Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
177
-
178
- Args:
179
- transformer ([`FluxTransformer2DModel`]):
180
- Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
181
- scheduler ([`FlowMatchEulerDiscreteScheduler`]):
182
- A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
183
- vae ([`AutoencoderKL`]):
184
- Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
185
- text_encoder ([`CLIPTextModel`]):
186
- [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
187
- the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
188
- text_encoder_2 ([`T5EncoderModel`]):
189
- [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
190
- the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
191
- tokenizer (`CLIPTokenizer`):
192
- Tokenizer of class
193
- [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
194
- tokenizer_2 (`T5TokenizerFast`):
195
- Second Tokenizer of class
196
- [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
197
- """
198
-
199
- model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->transformer->vae"
200
- _optional_components = ["image_encoder", "feature_extractor"]
201
- _callback_tensor_inputs = ["latents", "prompt_embeds"]
202
-
203
- def __init__(
204
- self,
205
- scheduler: FlowMatchEulerDiscreteScheduler,
206
- vae: AutoencoderKL,
207
- text_encoder: CLIPTextModel,
208
- tokenizer: CLIPTokenizer,
209
- text_encoder_2: T5EncoderModel,
210
- tokenizer_2: T5TokenizerFast,
211
- transformer: FluxTransformer2DModel,
212
- image_encoder: CLIPVisionModelWithProjection = None,
213
- feature_extractor: CLIPImageProcessor = None,
214
- ):
215
- super().__init__()
216
-
217
- self.register_modules(
218
- vae=vae,
219
- text_encoder=text_encoder,
220
- text_encoder_2=text_encoder_2,
221
- tokenizer=tokenizer,
222
- tokenizer_2=tokenizer_2,
223
- transformer=transformer,
224
- scheduler=scheduler,
225
- image_encoder=image_encoder,
226
- feature_extractor=feature_extractor,
227
- )
228
- self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
229
- # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
230
- # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
231
- self.latent_channels = self.vae.config.latent_channels if getattr(self, "vae", None) else 16
232
- self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
233
- self.tokenizer_max_length = (
234
- self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
235
- )
236
- self.default_sample_size = 128
237
-
238
- def _get_t5_prompt_embeds(
239
- self,
240
- prompt: Union[str, List[str]] = None,
241
- num_images_per_prompt: int = 1,
242
- max_sequence_length: int = 512,
243
- device: Optional[torch.device] = None,
244
- dtype: Optional[torch.dtype] = None,
245
- ):
246
- device = device or self._execution_device
247
- dtype = dtype or self.text_encoder.dtype
248
-
249
- prompt = [prompt] if isinstance(prompt, str) else prompt
250
- batch_size = len(prompt)
251
-
252
- if isinstance(self, TextualInversionLoaderMixin):
253
- prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)
254
-
255
- text_inputs = self.tokenizer_2(
256
- prompt,
257
- padding="max_length",
258
- max_length=max_sequence_length,
259
- truncation=True,
260
- return_length=False,
261
- return_overflowing_tokens=False,
262
- return_tensors="pt",
263
- )
264
- text_input_ids = text_inputs.input_ids
265
- untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
266
-
267
- if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
268
- removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
269
- logger.warning(
270
- "The following part of your input was truncated because `max_sequence_length` is set to "
271
- f" {max_sequence_length} tokens: {removed_text}"
272
- )
273
-
274
- prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
275
-
276
- dtype = self.text_encoder_2.dtype
277
- prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
278
-
279
- _, seq_len, _ = prompt_embeds.shape
280
-
281
- # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
282
- prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
283
- prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
284
-
285
- return prompt_embeds
286
-
287
- def _get_clip_prompt_embeds(
288
- self,
289
- prompt: Union[str, List[str]],
290
- num_images_per_prompt: int = 1,
291
- device: Optional[torch.device] = None,
292
- ):
293
- device = device or self._execution_device
294
-
295
- prompt = [prompt] if isinstance(prompt, str) else prompt
296
- batch_size = len(prompt)
297
-
298
- if isinstance(self, TextualInversionLoaderMixin):
299
- prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
300
-
301
- text_inputs = self.tokenizer(
302
- prompt,
303
- padding="max_length",
304
- max_length=self.tokenizer_max_length,
305
- truncation=True,
306
- return_overflowing_tokens=False,
307
- return_length=False,
308
- return_tensors="pt",
309
- )
310
-
311
- text_input_ids = text_inputs.input_ids
312
- untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
313
- if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
314
- removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
315
- logger.warning(
316
- "The following part of your input was truncated because CLIP can only handle sequences up to"
317
- f" {self.tokenizer_max_length} tokens: {removed_text}"
318
- )
319
- prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
320
-
321
- # Use pooled output of CLIPTextModel
322
- prompt_embeds = prompt_embeds.pooler_output
323
- prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
324
-
325
- # duplicate text embeddings for each generation per prompt, using mps friendly method
326
- prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
327
- prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
328
-
329
- return prompt_embeds
330
-
331
- def encode_prompt(
332
- self,
333
- prompt: Union[str, List[str]],
334
- prompt_2: Union[str, List[str]],
335
- device: Optional[torch.device] = None,
336
- num_images_per_prompt: int = 1,
337
- prompt_embeds: Optional[torch.FloatTensor] = None,
338
- pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
339
- max_sequence_length: int = 512,
340
- lora_scale: Optional[float] = None,
341
- ):
342
- r"""
343
-
344
- Args:
345
- prompt (`str` or `List[str]`, *optional*):
346
- prompt to be encoded
347
- prompt_2 (`str` or `List[str]`, *optional*):
348
- The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
349
- used in all text-encoders
350
- device: (`torch.device`):
351
- torch device
352
- num_images_per_prompt (`int`):
353
- number of images that should be generated per prompt
354
- prompt_embeds (`torch.FloatTensor`, *optional*):
355
- Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
356
- provided, text embeddings will be generated from `prompt` input argument.
357
- pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
358
- Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
359
- If not provided, pooled text embeddings will be generated from `prompt` input argument.
360
- lora_scale (`float`, *optional*):
361
- A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
362
- """
363
- device = device or self._execution_device
364
-
365
- # set lora scale so that monkey patched LoRA
366
- # function of text encoder can correctly access it
367
- if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
368
- self._lora_scale = lora_scale
369
-
370
- # dynamically adjust the LoRA scale
371
- if self.text_encoder is not None and USE_PEFT_BACKEND:
372
- scale_lora_layers(self.text_encoder, lora_scale)
373
- if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
374
- scale_lora_layers(self.text_encoder_2, lora_scale)
375
-
376
- prompt = [prompt] if isinstance(prompt, str) else prompt
377
-
378
- if prompt_embeds is None:
379
- prompt_2 = prompt_2 or prompt
380
- prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
381
-
382
- # We only use the pooled prompt output from the CLIPTextModel
383
- pooled_prompt_embeds = self._get_clip_prompt_embeds(
384
- prompt=prompt,
385
- device=device,
386
- num_images_per_prompt=num_images_per_prompt,
387
- )
388
- prompt_embeds = self._get_t5_prompt_embeds(
389
- prompt=prompt_2,
390
- num_images_per_prompt=num_images_per_prompt,
391
- max_sequence_length=max_sequence_length,
392
- device=device,
393
- )
394
-
395
- if self.text_encoder is not None:
396
- if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
397
- # Retrieve the original scale by scaling back the LoRA layers
398
- unscale_lora_layers(self.text_encoder, lora_scale)
399
-
400
- if self.text_encoder_2 is not None:
401
- if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
402
- # Retrieve the original scale by scaling back the LoRA layers
403
- unscale_lora_layers(self.text_encoder_2, lora_scale)
404
-
405
- dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
406
- text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
407
-
408
- return prompt_embeds, pooled_prompt_embeds, text_ids
409
-
410
- def encode_image(self, image, device, num_images_per_prompt):
411
- dtype = next(self.image_encoder.parameters()).dtype
412
-
413
- if not isinstance(image, torch.Tensor):
414
- image = self.feature_extractor(image, return_tensors="pt").pixel_values
415
-
416
- image = image.to(device=device, dtype=dtype)
417
- image_embeds = self.image_encoder(image).image_embeds
418
- image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
419
- return image_embeds
420
-
421
- def prepare_ip_adapter_image_embeds(
422
- self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt
423
- ):
424
- image_embeds = []
425
- if ip_adapter_image_embeds is None:
426
- if not isinstance(ip_adapter_image, list):
427
- ip_adapter_image = [ip_adapter_image]
428
-
429
- if len(ip_adapter_image) != self.transformer.encoder_hid_proj.num_ip_adapters:
430
- raise ValueError(
431
- f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters."
432
- )
433
-
434
- for single_ip_adapter_image in ip_adapter_image:
435
- single_image_embeds = self.encode_image(single_ip_adapter_image, device, 1)
436
- image_embeds.append(single_image_embeds[None, :])
437
- else:
438
- if not isinstance(ip_adapter_image_embeds, list):
439
- ip_adapter_image_embeds = [ip_adapter_image_embeds]
440
-
441
- if len(ip_adapter_image_embeds) != self.transformer.encoder_hid_proj.num_ip_adapters:
442
- raise ValueError(
443
- f"`ip_adapter_image_embeds` must have same length as the number of IP Adapters. Got {len(ip_adapter_image_embeds)} image embeds and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters."
444
- )
445
-
446
- for single_image_embeds in ip_adapter_image_embeds:
447
- image_embeds.append(single_image_embeds)
448
-
449
- ip_adapter_image_embeds = []
450
- for single_image_embeds in image_embeds:
451
- single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
452
- single_image_embeds = single_image_embeds.to(device=device)
453
- ip_adapter_image_embeds.append(single_image_embeds)
454
-
455
- return ip_adapter_image_embeds
456
-
457
- def check_inputs(
458
- self,
459
- prompt,
460
- prompt_2,
461
- height,
462
- width,
463
- negative_prompt=None,
464
- negative_prompt_2=None,
465
- prompt_embeds=None,
466
- negative_prompt_embeds=None,
467
- pooled_prompt_embeds=None,
468
- negative_pooled_prompt_embeds=None,
469
- callback_on_step_end_tensor_inputs=None,
470
- max_sequence_length=None,
471
- ):
472
- if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
473
- logger.warning(
474
- f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
475
- )
476
-
477
- if callback_on_step_end_tensor_inputs is not None and not all(
478
- k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
479
- ):
480
- raise ValueError(
481
- f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
482
- )
483
-
484
- if prompt is not None and prompt_embeds is not None:
485
- raise ValueError(
486
- f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
487
- " only forward one of the two."
488
- )
489
- elif prompt_2 is not None and prompt_embeds is not None:
490
- raise ValueError(
491
- f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
492
- " only forward one of the two."
493
- )
494
- elif prompt is None and prompt_embeds is None:
495
- raise ValueError(
496
- "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
497
- )
498
- elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
499
- raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
500
- elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
501
- raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
502
-
503
- if negative_prompt is not None and negative_prompt_embeds is not None:
504
- raise ValueError(
505
- f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
506
- f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
507
- )
508
- elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
509
- raise ValueError(
510
- f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
511
- f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
512
- )
513
-
514
- if prompt_embeds is not None and pooled_prompt_embeds is None:
515
- raise ValueError(
516
- "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
517
- )
518
- if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
519
- raise ValueError(
520
- "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
521
- )
522
-
523
- if max_sequence_length is not None and max_sequence_length > 512:
524
- raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
525
-
526
- @staticmethod
527
- def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
528
- latent_image_ids = torch.zeros(height, width, 3)
529
- latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
530
- latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
531
-
532
- latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
533
-
534
- latent_image_ids = latent_image_ids.reshape(
535
- latent_image_id_height * latent_image_id_width, latent_image_id_channels
536
- )
537
-
538
- return latent_image_ids.to(device=device, dtype=dtype)
539
-
540
- @staticmethod
541
- def _pack_latents(latents, batch_size, num_channels_latents, height, width):
542
- latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
543
- latents = latents.permute(0, 2, 4, 1, 3, 5)
544
- latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
545
-
546
- return latents
547
-
548
- @staticmethod
549
- def _unpack_latents(latents, height, width, vae_scale_factor):
550
- batch_size, num_patches, channels = latents.shape
551
-
552
- # VAE applies 8x compression on images but we must also account for packing which requires
553
- # latent height and width to be divisible by 2.
554
- height = 2 * (int(height) // (vae_scale_factor * 2))
555
- width = 2 * (int(width) // (vae_scale_factor * 2))
556
-
557
- latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
558
- latents = latents.permute(0, 3, 1, 4, 2, 5)
559
-
560
- latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
561
-
562
- return latents
563
-
564
- # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_inpaint.StableDiffusion3InpaintPipeline._encode_vae_image
565
- def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
566
- if isinstance(generator, list):
567
- image_latents = [
568
- retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
569
- for i in range(image.shape[0])
570
- ]
571
- image_latents = torch.cat(image_latents, dim=0)
572
- else:
573
- image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
574
-
575
- image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
576
-
577
- return image_latents
578
-
579
- def enable_vae_slicing(self):
580
- r"""
581
- Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
582
- compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
583
- """
584
- self.vae.enable_slicing()
585
-
586
- def disable_vae_slicing(self):
587
- r"""
588
- Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
589
- computing decoding in one step.
590
- """
591
- self.vae.disable_slicing()
592
-
593
- def enable_vae_tiling(self):
594
- r"""
595
- Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
596
- compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
597
- processing larger images.
598
- """
599
- self.vae.enable_tiling()
600
-
601
- def disable_vae_tiling(self):
602
- r"""
603
- Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
604
- computing decoding in one step.
605
- """
606
- self.vae.disable_tiling()
607
-
608
- def prepare_latents(
609
- self,
610
- image: torch.Tensor,
611
- batch_size: int,
612
- num_channels_latents: int,
613
- height: int,
614
- width: int,
615
- dtype: torch.dtype,
616
- device: torch.device,
617
- generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
618
- latents: Optional[torch.Tensor] = None,
619
- ):
620
- if isinstance(generator, list) and len(generator) != batch_size:
621
- raise ValueError(
622
- f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
623
- f" size of {batch_size}. Make sure the batch size matches the length of the generators."
624
- )
625
-
626
- # VAE applies 8x compression on images but we must also account for packing which requires
627
- # latent height and width to be divisible by 2.
628
- height = 2 * (int(height) // (self.vae_scale_factor * 2))
629
- width = 2 * (int(width) // (self.vae_scale_factor * 2))
630
- shape = (batch_size, num_channels_latents, height, width)
631
-
632
- image = image.to(device=device, dtype=dtype)
633
- if image.shape[1] != self.latent_channels:
634
- image_latents = self._encode_vae_image(image=image, generator=generator)
635
- else:
636
- image_latents = image
637
- if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
638
- # expand init_latents for batch_size
639
- additional_image_per_prompt = batch_size // image_latents.shape[0]
640
- image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
641
- elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
642
- raise ValueError(
643
- f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
644
- )
645
- else:
646
- image_latents = torch.cat([image_latents], dim=0)
647
-
648
- image_latent_height, image_latent_width = image_latents.shape[2:]
649
- image_latents = self._pack_latents(
650
- image_latents, batch_size, num_channels_latents, image_latent_height, image_latent_width
651
- )
652
-
653
- latent_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
654
- image_ids = self._prepare_latent_image_ids(
655
- batch_size, image_latent_height // 2, image_latent_width // 2, device, dtype
656
- )
657
- # image ids are the same as latent ids with the first dimension set to 1 instead of 0
658
- image_ids[..., 0] = 1
659
-
660
- if latents is None:
661
- latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
662
- latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
663
- else:
664
- latents = latents.to(device=device, dtype=dtype)
665
-
666
- return latents, image_latents, latent_ids, image_ids
667
-
668
- @property
669
- def guidance_scale(self):
670
- return self._guidance_scale
671
-
672
- @property
673
- def joint_attention_kwargs(self):
674
- return self._joint_attention_kwargs
675
-
676
- @property
677
- def num_timesteps(self):
678
- return self._num_timesteps
679
-
680
- @property
681
- def current_timestep(self):
682
- return self._current_timestep
683
-
684
- @property
685
- def interrupt(self):
686
- return self._interrupt
687
-
688
- @torch.no_grad()
689
- @replace_example_docstring(EXAMPLE_DOC_STRING)
690
- def __call__(
691
- self,
692
- image: Optional[PipelineImageInput] = None,
693
- prompt: Union[str, List[str]] = None,
694
- prompt_2: Optional[Union[str, List[str]]] = None,
695
- negative_prompt: Union[str, List[str]] = None,
696
- negative_prompt_2: Optional[Union[str, List[str]]] = None,
697
- true_cfg_scale: float = 1.0,
698
- height: Optional[int] = None,
699
- width: Optional[int] = None,
700
- num_inference_steps: int = 28,
701
- sigmas: Optional[List[float]] = None,
702
- guidance_scale: float = 3.5,
703
- num_images_per_prompt: Optional[int] = 1,
704
- generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
705
- latents: Optional[torch.FloatTensor] = None,
706
- prompt_embeds: Optional[torch.FloatTensor] = None,
707
- pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
708
- ip_adapter_image: Optional[PipelineImageInput] = None,
709
- ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
710
- negative_ip_adapter_image: Optional[PipelineImageInput] = None,
711
- negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
712
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
713
- negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
714
- output_type: Optional[str] = "pil",
715
- return_dict: bool = True,
716
- joint_attention_kwargs: Optional[Dict[str, Any]] = None,
717
- callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
718
- callback_on_step_end_tensor_inputs: List[str] = ["latents"],
719
- max_sequence_length: int = 512,
720
- max_area: int = 1024**2,
721
- ):
722
- r"""
723
- Function invoked when calling the pipeline for generation.
724
-
725
- Args:
726
- image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
727
- `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
728
- numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
729
- or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
730
- list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
731
- latents as `image`, but if passing latents directly it is not encoded again.
732
- prompt (`str` or `List[str]`, *optional*):
733
- The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
734
- instead.
735
- prompt_2 (`str` or `List[str]`, *optional*):
736
- The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
737
- will be used instead.
738
- negative_prompt (`str` or `List[str]`, *optional*):
739
- The prompt or prompts not to guide the image generation. If not defined, one has to pass
740
- `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
741
- not greater than `1`).
742
- negative_prompt_2 (`str` or `List[str]`, *optional*):
743
- The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
744
- `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
745
- true_cfg_scale (`float`, *optional*, defaults to 1.0):
746
- When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance.
747
- height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
748
- The height in pixels of the generated image. This is set to 1024 by default for the best results.
749
- width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
750
- The width in pixels of the generated image. This is set to 1024 by default for the best results.
751
- num_inference_steps (`int`, *optional*, defaults to 50):
752
- The number of denoising steps. More denoising steps usually lead to a higher quality image at the
753
- expense of slower inference.
754
- sigmas (`List[float]`, *optional*):
755
- Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
756
- their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
757
- will be used.
758
- guidance_scale (`float`, *optional*, defaults to 3.5):
759
- Guidance scale as defined in [Classifier-Free Diffusion
760
- Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
761
- of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
762
- `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
763
- the text `prompt`, usually at the expense of lower image quality.
764
- num_images_per_prompt (`int`, *optional*, defaults to 1):
765
- The number of images to generate per prompt.
766
- generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
767
- One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
768
- to make generation deterministic.
769
- latents (`torch.FloatTensor`, *optional*):
770
- Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
771
- generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
772
- tensor will ge generated by sampling using the supplied random `generator`.
773
- prompt_embeds (`torch.FloatTensor`, *optional*):
774
- Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
775
- provided, text embeddings will be generated from `prompt` input argument.
776
- pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
777
- Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
778
- If not provided, pooled text embeddings will be generated from `prompt` input argument.
779
- ip_adapter_image: (`PipelineImageInput`, *optional*):
780
- Optional image input to work with IP Adapters.
781
- ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
782
- Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
783
- IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
784
- provided, embeddings are computed from the `ip_adapter_image` input argument.
785
- negative_ip_adapter_image:
786
- (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
787
- negative_ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
788
- Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
789
- IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
790
- provided, embeddings are computed from the `ip_adapter_image` input argument.
791
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
792
- Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
793
- weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
794
- argument.
795
- negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
796
- Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
797
- weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
798
- input argument.
799
- output_type (`str`, *optional*, defaults to `"pil"`):
800
- The output format of the generate image. Choose between
801
- [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
802
- return_dict (`bool`, *optional*, defaults to `True`):
803
- Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
804
- joint_attention_kwargs (`dict`, *optional*):
805
- A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
806
- `self.processor` in
807
- [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
808
- callback_on_step_end (`Callable`, *optional*):
809
- A function that calls at the end of each denoising steps during the inference. The function is called
810
- with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
811
- callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
812
- `callback_on_step_end_tensor_inputs`.
813
- callback_on_step_end_tensor_inputs (`List`, *optional*):
814
- The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
815
- will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
816
- `._callback_tensor_inputs` attribute of your pipeline class.
817
- max_sequence_length (`int` defaults to 512):
818
- Maximum sequence length to use with the `prompt`.
819
- max_area (`int`, defaults to `1024 ** 2`):
820
- The maximum area of the generated image in pixels. The height and width will be adjusted to fit this
821
- area while maintaining the aspect ratio.
822
-
823
- Examples:
824
-
825
- Returns:
826
- [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
827
- is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
828
- images.
829
- """
830
-
831
- height = height or self.default_sample_size * self.vae_scale_factor
832
- width = width or self.default_sample_size * self.vae_scale_factor
833
-
834
- original_height, original_width = height, width
835
- aspect_ratio = width / height
836
- width = round((max_area * aspect_ratio) ** 0.5)
837
- height = round((max_area / aspect_ratio) ** 0.5)
838
-
839
- multiple_of = self.vae_scale_factor * 2
840
- width = width // multiple_of * multiple_of
841
- height = height // multiple_of * multiple_of
842
-
843
- if height != original_height or width != original_width:
844
- logger.warning(
845
- f"Generation `height` and `width` have been adjusted to {height} and {width} to fit the model requirements."
846
- )
847
-
848
- # 1. Check inputs. Raise error if not correct
849
- self.check_inputs(
850
- prompt,
851
- prompt_2,
852
- height,
853
- width,
854
- negative_prompt=negative_prompt,
855
- negative_prompt_2=negative_prompt_2,
856
- prompt_embeds=prompt_embeds,
857
- negative_prompt_embeds=negative_prompt_embeds,
858
- pooled_prompt_embeds=pooled_prompt_embeds,
859
- negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
860
- callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
861
- max_sequence_length=max_sequence_length,
862
- )
863
-
864
- self._guidance_scale = guidance_scale
865
- self._joint_attention_kwargs = joint_attention_kwargs
866
- self._current_timestep = None
867
- self._interrupt = False
868
-
869
- # 2. Define call parameters
870
- if prompt is not None and isinstance(prompt, str):
871
- batch_size = 1
872
- elif prompt is not None and isinstance(prompt, list):
873
- batch_size = len(prompt)
874
- else:
875
- batch_size = prompt_embeds.shape[0]
876
-
877
- device = self._execution_device
878
-
879
- lora_scale = (
880
- self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
881
- )
882
- has_neg_prompt = negative_prompt is not None or (
883
- negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None
884
- )
885
- do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
886
- (
887
- prompt_embeds,
888
- pooled_prompt_embeds,
889
- text_ids,
890
- ) = self.encode_prompt(
891
- prompt=prompt,
892
- prompt_2=prompt_2,
893
- prompt_embeds=prompt_embeds,
894
- pooled_prompt_embeds=pooled_prompt_embeds,
895
- device=device,
896
- num_images_per_prompt=num_images_per_prompt,
897
- max_sequence_length=max_sequence_length,
898
- lora_scale=lora_scale,
899
- )
900
- if do_true_cfg:
901
- (
902
- negative_prompt_embeds,
903
- negative_pooled_prompt_embeds,
904
- negative_text_ids,
905
- ) = self.encode_prompt(
906
- prompt=negative_prompt,
907
- prompt_2=negative_prompt_2,
908
- prompt_embeds=negative_prompt_embeds,
909
- pooled_prompt_embeds=negative_pooled_prompt_embeds,
910
- device=device,
911
- num_images_per_prompt=num_images_per_prompt,
912
- max_sequence_length=max_sequence_length,
913
- lora_scale=lora_scale,
914
- )
915
-
916
- # 3. Preprocess image
917
- if not torch.is_tensor(image) or image.size(1) == self.latent_channels:
918
- image_width, image_height = self.image_processor.get_default_height_width(image)
919
- aspect_ratio = image_width / image_height
920
-
921
- # Kontext is trained on specific resolutions, using one of them is recommended
922
- _, image_width, image_height = min(
923
- (abs(aspect_ratio - w / h), w, h) for w, h in PREFERRED_KONTEXT_RESOLUTIONS
924
- )
925
- image_width = image_width // multiple_of * multiple_of
926
- image_height = image_height // multiple_of * multiple_of
927
- image = self.image_processor.resize(image, image_height, image_width)
928
- image = self.image_processor.preprocess(image, image_height, image_width)
929
-
930
- # 4. Prepare latent variables
931
- num_channels_latents = self.transformer.config.in_channels // 4
932
- latents, image_latents, latent_ids, image_ids = self.prepare_latents(
933
- image,
934
- batch_size * num_images_per_prompt,
935
- num_channels_latents,
936
- height,
937
- width,
938
- prompt_embeds.dtype,
939
- device,
940
- generator,
941
- latents,
942
- )
943
- latent_ids = torch.cat([latent_ids, image_ids], dim=0) # dim 0 is sequence dimension
944
-
945
- # 5. Prepare timesteps
946
- sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
947
- image_seq_len = latents.shape[1]
948
- mu = calculate_shift(
949
- image_seq_len,
950
- self.scheduler.config.get("base_image_seq_len", 256),
951
- self.scheduler.config.get("max_image_seq_len", 4096),
952
- self.scheduler.config.get("base_shift", 0.5),
953
- self.scheduler.config.get("max_shift", 1.15),
954
- )
955
- timesteps, num_inference_steps = retrieve_timesteps(
956
- self.scheduler,
957
- num_inference_steps,
958
- device,
959
- sigmas=sigmas,
960
- mu=mu,
961
- )
962
- num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
963
- self._num_timesteps = len(timesteps)
964
-
965
- # handle guidance
966
- if self.transformer.config.guidance_embeds:
967
- guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
968
- guidance = guidance.expand(latents.shape[0])
969
- else:
970
- guidance = None
971
-
972
- if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and (
973
- negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None
974
- ):
975
- negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
976
- negative_ip_adapter_image = [negative_ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters
977
-
978
- elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and (
979
- negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None
980
- ):
981
- ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
982
- ip_adapter_image = [ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters
983
-
984
- if self.joint_attention_kwargs is None:
985
- self._joint_attention_kwargs = {}
986
-
987
- image_embeds = None
988
- negative_image_embeds = None
989
- if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
990
- image_embeds = self.prepare_ip_adapter_image_embeds(
991
- ip_adapter_image,
992
- ip_adapter_image_embeds,
993
- device,
994
- batch_size * num_images_per_prompt,
995
- )
996
- if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None:
997
- negative_image_embeds = self.prepare_ip_adapter_image_embeds(
998
- negative_ip_adapter_image,
999
- negative_ip_adapter_image_embeds,
1000
- device,
1001
- batch_size * num_images_per_prompt,
1002
- )
1003
-
1004
- # 6. Denoising loop
1005
- with self.progress_bar(total=num_inference_steps) as progress_bar:
1006
- for i, t in enumerate(timesteps):
1007
- if self.interrupt:
1008
- continue
1009
-
1010
- self._current_timestep = t
1011
- if image_embeds is not None:
1012
- self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds
1013
-
1014
- latent_model_input = torch.cat([latents, image_latents], dim=1)
1015
- timestep = t.expand(latents.shape[0]).to(latents.dtype)
1016
-
1017
- noise_pred = self.transformer(
1018
- hidden_states=latent_model_input,
1019
- timestep=timestep / 1000,
1020
- guidance=guidance,
1021
- pooled_projections=pooled_prompt_embeds,
1022
- encoder_hidden_states=prompt_embeds,
1023
- txt_ids=text_ids,
1024
- img_ids=latent_ids,
1025
- joint_attention_kwargs=self.joint_attention_kwargs,
1026
- return_dict=False,
1027
- )[0]
1028
- noise_pred = noise_pred[:, : latents.size(1)]
1029
-
1030
- if do_true_cfg:
1031
- if negative_image_embeds is not None:
1032
- self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds
1033
- neg_noise_pred = self.transformer(
1034
- hidden_states=latent_model_input,
1035
- timestep=timestep / 1000,
1036
- guidance=guidance,
1037
- pooled_projections=negative_pooled_prompt_embeds,
1038
- encoder_hidden_states=negative_prompt_embeds,
1039
- txt_ids=negative_text_ids,
1040
- img_ids=latent_ids,
1041
- joint_attention_kwargs=self.joint_attention_kwargs,
1042
- return_dict=False,
1043
- )[0]
1044
- neg_noise_pred = neg_noise_pred[:, : latents.size(1)]
1045
- noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
1046
-
1047
- # compute the previous noisy sample x_t -> x_t-1
1048
- latents_dtype = latents.dtype
1049
- latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
1050
-
1051
- if latents.dtype != latents_dtype:
1052
- if torch.backends.mps.is_available():
1053
- # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1054
- latents = latents.to(latents_dtype)
1055
-
1056
- if callback_on_step_end is not None:
1057
- callback_kwargs = {}
1058
- for k in callback_on_step_end_tensor_inputs:
1059
- callback_kwargs[k] = locals()[k]
1060
- callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1061
-
1062
- latents = callback_outputs.pop("latents", latents)
1063
- prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1064
-
1065
- # call the callback, if provided
1066
- if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1067
- progress_bar.update()
1068
-
1069
- if XLA_AVAILABLE:
1070
- xm.mark_step()
1071
-
1072
- self._current_timestep = None
1073
-
1074
- if output_type == "latent":
1075
- image = latents
1076
- else:
1077
- latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
1078
- latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
1079
- image = self.vae.decode(latents, return_dict=False)[0]
1080
- image = self.image_processor.postprocess(image, output_type=output_type)
1081
-
1082
- # Offload all models
1083
- self.maybe_free_model_hooks()
1084
-
1085
- if not return_dict:
1086
- return (image,)
1087
-
1088
- return FluxPipelineOutput(images=image)