Spaces:
Running
on
Zero
Running
on
Zero
Delete kontext_pipeline.py
Browse files- kontext_pipeline.py +0 -1088
kontext_pipeline.py
DELETED
@@ -1,1088 +0,0 @@
|
|
1 |
-
import inspect
|
2 |
-
from typing import Any, Callable, Dict, List, Optional, Union
|
3 |
-
|
4 |
-
import numpy as np
|
5 |
-
import torch
|
6 |
-
from transformers import (
|
7 |
-
CLIPImageProcessor,
|
8 |
-
CLIPTextModel,
|
9 |
-
CLIPTokenizer,
|
10 |
-
CLIPVisionModelWithProjection,
|
11 |
-
T5EncoderModel,
|
12 |
-
T5TokenizerFast,
|
13 |
-
)
|
14 |
-
|
15 |
-
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
16 |
-
from diffusers.loaders import (
|
17 |
-
FluxIPAdapterMixin,
|
18 |
-
FluxLoraLoaderMixin,
|
19 |
-
FromSingleFileMixin,
|
20 |
-
TextualInversionLoaderMixin,
|
21 |
-
)
|
22 |
-
from diffusers.models import AutoencoderKL, FluxTransformer2DModel
|
23 |
-
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
24 |
-
from diffusers.utils import (
|
25 |
-
USE_PEFT_BACKEND,
|
26 |
-
is_torch_xla_available,
|
27 |
-
logging,
|
28 |
-
replace_example_docstring,
|
29 |
-
scale_lora_layers,
|
30 |
-
unscale_lora_layers,
|
31 |
-
)
|
32 |
-
|
33 |
-
from diffusers.utils.torch_utils import randn_tensor
|
34 |
-
from diffusers import DiffusionPipeline
|
35 |
-
|
36 |
-
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
if is_torch_xla_available():
|
41 |
-
import torch_xla.core.xla_model as xm
|
42 |
-
|
43 |
-
XLA_AVAILABLE = True
|
44 |
-
else:
|
45 |
-
XLA_AVAILABLE = False
|
46 |
-
|
47 |
-
|
48 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
49 |
-
|
50 |
-
EXAMPLE_DOC_STRING = """
|
51 |
-
Examples:
|
52 |
-
```py
|
53 |
-
# TODO
|
54 |
-
```
|
55 |
-
"""
|
56 |
-
|
57 |
-
|
58 |
-
PREFERRED_KONTEXT_RESOLUTIONS = [
|
59 |
-
(672, 1568),
|
60 |
-
(688, 1504),
|
61 |
-
(720, 1456),
|
62 |
-
(752, 1392),
|
63 |
-
(800, 1328),
|
64 |
-
(832, 1248),
|
65 |
-
(880, 1184),
|
66 |
-
(944, 1104),
|
67 |
-
(1024, 1024),
|
68 |
-
(1104, 944),
|
69 |
-
(1184, 880),
|
70 |
-
(1248, 832),
|
71 |
-
(1328, 800),
|
72 |
-
(1392, 752),
|
73 |
-
(1456, 720),
|
74 |
-
(1504, 688),
|
75 |
-
(1568, 672),
|
76 |
-
]
|
77 |
-
|
78 |
-
|
79 |
-
def calculate_shift(
|
80 |
-
image_seq_len,
|
81 |
-
base_seq_len: int = 256,
|
82 |
-
max_seq_len: int = 4096,
|
83 |
-
base_shift: float = 0.5,
|
84 |
-
max_shift: float = 1.15,
|
85 |
-
):
|
86 |
-
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
87 |
-
b = base_shift - m * base_seq_len
|
88 |
-
mu = image_seq_len * m + b
|
89 |
-
return mu
|
90 |
-
|
91 |
-
|
92 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
93 |
-
def retrieve_timesteps(
|
94 |
-
scheduler,
|
95 |
-
num_inference_steps: Optional[int] = None,
|
96 |
-
device: Optional[Union[str, torch.device]] = None,
|
97 |
-
timesteps: Optional[List[int]] = None,
|
98 |
-
sigmas: Optional[List[float]] = None,
|
99 |
-
**kwargs,
|
100 |
-
):
|
101 |
-
r"""
|
102 |
-
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
103 |
-
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
104 |
-
|
105 |
-
Args:
|
106 |
-
scheduler (`SchedulerMixin`):
|
107 |
-
The scheduler to get timesteps from.
|
108 |
-
num_inference_steps (`int`):
|
109 |
-
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
110 |
-
must be `None`.
|
111 |
-
device (`str` or `torch.device`, *optional*):
|
112 |
-
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
113 |
-
timesteps (`List[int]`, *optional*):
|
114 |
-
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
115 |
-
`num_inference_steps` and `sigmas` must be `None`.
|
116 |
-
sigmas (`List[float]`, *optional*):
|
117 |
-
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
118 |
-
`num_inference_steps` and `timesteps` must be `None`.
|
119 |
-
|
120 |
-
Returns:
|
121 |
-
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
122 |
-
second element is the number of inference steps.
|
123 |
-
"""
|
124 |
-
if timesteps is not None and sigmas is not None:
|
125 |
-
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
126 |
-
if timesteps is not None:
|
127 |
-
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
128 |
-
if not accepts_timesteps:
|
129 |
-
raise ValueError(
|
130 |
-
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
131 |
-
f" timestep schedules. Please check whether you are using the correct scheduler."
|
132 |
-
)
|
133 |
-
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
134 |
-
timesteps = scheduler.timesteps
|
135 |
-
num_inference_steps = len(timesteps)
|
136 |
-
elif sigmas is not None:
|
137 |
-
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
138 |
-
if not accept_sigmas:
|
139 |
-
raise ValueError(
|
140 |
-
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
141 |
-
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
142 |
-
)
|
143 |
-
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
144 |
-
timesteps = scheduler.timesteps
|
145 |
-
num_inference_steps = len(timesteps)
|
146 |
-
else:
|
147 |
-
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
148 |
-
timesteps = scheduler.timesteps
|
149 |
-
return timesteps, num_inference_steps
|
150 |
-
|
151 |
-
|
152 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
153 |
-
def retrieve_latents(
|
154 |
-
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
155 |
-
):
|
156 |
-
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
157 |
-
return encoder_output.latent_dist.sample(generator)
|
158 |
-
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
159 |
-
return encoder_output.latent_dist.mode()
|
160 |
-
elif hasattr(encoder_output, "latents"):
|
161 |
-
return encoder_output.latents
|
162 |
-
else:
|
163 |
-
raise AttributeError("Could not access latents of provided encoder_output")
|
164 |
-
|
165 |
-
|
166 |
-
class FluxKontextPipeline(
|
167 |
-
DiffusionPipeline,
|
168 |
-
FluxLoraLoaderMixin,
|
169 |
-
FromSingleFileMixin,
|
170 |
-
TextualInversionLoaderMixin,
|
171 |
-
FluxIPAdapterMixin,
|
172 |
-
):
|
173 |
-
r"""
|
174 |
-
The Flux Kontext pipeline for text-to-image generation.
|
175 |
-
|
176 |
-
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
177 |
-
|
178 |
-
Args:
|
179 |
-
transformer ([`FluxTransformer2DModel`]):
|
180 |
-
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
|
181 |
-
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
182 |
-
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
183 |
-
vae ([`AutoencoderKL`]):
|
184 |
-
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
185 |
-
text_encoder ([`CLIPTextModel`]):
|
186 |
-
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
187 |
-
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
188 |
-
text_encoder_2 ([`T5EncoderModel`]):
|
189 |
-
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
|
190 |
-
the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
|
191 |
-
tokenizer (`CLIPTokenizer`):
|
192 |
-
Tokenizer of class
|
193 |
-
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
|
194 |
-
tokenizer_2 (`T5TokenizerFast`):
|
195 |
-
Second Tokenizer of class
|
196 |
-
[T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
|
197 |
-
"""
|
198 |
-
|
199 |
-
model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->transformer->vae"
|
200 |
-
_optional_components = ["image_encoder", "feature_extractor"]
|
201 |
-
_callback_tensor_inputs = ["latents", "prompt_embeds"]
|
202 |
-
|
203 |
-
def __init__(
|
204 |
-
self,
|
205 |
-
scheduler: FlowMatchEulerDiscreteScheduler,
|
206 |
-
vae: AutoencoderKL,
|
207 |
-
text_encoder: CLIPTextModel,
|
208 |
-
tokenizer: CLIPTokenizer,
|
209 |
-
text_encoder_2: T5EncoderModel,
|
210 |
-
tokenizer_2: T5TokenizerFast,
|
211 |
-
transformer: FluxTransformer2DModel,
|
212 |
-
image_encoder: CLIPVisionModelWithProjection = None,
|
213 |
-
feature_extractor: CLIPImageProcessor = None,
|
214 |
-
):
|
215 |
-
super().__init__()
|
216 |
-
|
217 |
-
self.register_modules(
|
218 |
-
vae=vae,
|
219 |
-
text_encoder=text_encoder,
|
220 |
-
text_encoder_2=text_encoder_2,
|
221 |
-
tokenizer=tokenizer,
|
222 |
-
tokenizer_2=tokenizer_2,
|
223 |
-
transformer=transformer,
|
224 |
-
scheduler=scheduler,
|
225 |
-
image_encoder=image_encoder,
|
226 |
-
feature_extractor=feature_extractor,
|
227 |
-
)
|
228 |
-
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
|
229 |
-
# Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
|
230 |
-
# by the patch size. So the vae scale factor is multiplied by the patch size to account for this
|
231 |
-
self.latent_channels = self.vae.config.latent_channels if getattr(self, "vae", None) else 16
|
232 |
-
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
|
233 |
-
self.tokenizer_max_length = (
|
234 |
-
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
|
235 |
-
)
|
236 |
-
self.default_sample_size = 128
|
237 |
-
|
238 |
-
def _get_t5_prompt_embeds(
|
239 |
-
self,
|
240 |
-
prompt: Union[str, List[str]] = None,
|
241 |
-
num_images_per_prompt: int = 1,
|
242 |
-
max_sequence_length: int = 512,
|
243 |
-
device: Optional[torch.device] = None,
|
244 |
-
dtype: Optional[torch.dtype] = None,
|
245 |
-
):
|
246 |
-
device = device or self._execution_device
|
247 |
-
dtype = dtype or self.text_encoder.dtype
|
248 |
-
|
249 |
-
prompt = [prompt] if isinstance(prompt, str) else prompt
|
250 |
-
batch_size = len(prompt)
|
251 |
-
|
252 |
-
if isinstance(self, TextualInversionLoaderMixin):
|
253 |
-
prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)
|
254 |
-
|
255 |
-
text_inputs = self.tokenizer_2(
|
256 |
-
prompt,
|
257 |
-
padding="max_length",
|
258 |
-
max_length=max_sequence_length,
|
259 |
-
truncation=True,
|
260 |
-
return_length=False,
|
261 |
-
return_overflowing_tokens=False,
|
262 |
-
return_tensors="pt",
|
263 |
-
)
|
264 |
-
text_input_ids = text_inputs.input_ids
|
265 |
-
untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
|
266 |
-
|
267 |
-
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
268 |
-
removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
269 |
-
logger.warning(
|
270 |
-
"The following part of your input was truncated because `max_sequence_length` is set to "
|
271 |
-
f" {max_sequence_length} tokens: {removed_text}"
|
272 |
-
)
|
273 |
-
|
274 |
-
prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
|
275 |
-
|
276 |
-
dtype = self.text_encoder_2.dtype
|
277 |
-
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
278 |
-
|
279 |
-
_, seq_len, _ = prompt_embeds.shape
|
280 |
-
|
281 |
-
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
282 |
-
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
283 |
-
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
284 |
-
|
285 |
-
return prompt_embeds
|
286 |
-
|
287 |
-
def _get_clip_prompt_embeds(
|
288 |
-
self,
|
289 |
-
prompt: Union[str, List[str]],
|
290 |
-
num_images_per_prompt: int = 1,
|
291 |
-
device: Optional[torch.device] = None,
|
292 |
-
):
|
293 |
-
device = device or self._execution_device
|
294 |
-
|
295 |
-
prompt = [prompt] if isinstance(prompt, str) else prompt
|
296 |
-
batch_size = len(prompt)
|
297 |
-
|
298 |
-
if isinstance(self, TextualInversionLoaderMixin):
|
299 |
-
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
300 |
-
|
301 |
-
text_inputs = self.tokenizer(
|
302 |
-
prompt,
|
303 |
-
padding="max_length",
|
304 |
-
max_length=self.tokenizer_max_length,
|
305 |
-
truncation=True,
|
306 |
-
return_overflowing_tokens=False,
|
307 |
-
return_length=False,
|
308 |
-
return_tensors="pt",
|
309 |
-
)
|
310 |
-
|
311 |
-
text_input_ids = text_inputs.input_ids
|
312 |
-
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
313 |
-
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
314 |
-
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
315 |
-
logger.warning(
|
316 |
-
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
317 |
-
f" {self.tokenizer_max_length} tokens: {removed_text}"
|
318 |
-
)
|
319 |
-
prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
|
320 |
-
|
321 |
-
# Use pooled output of CLIPTextModel
|
322 |
-
prompt_embeds = prompt_embeds.pooler_output
|
323 |
-
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
324 |
-
|
325 |
-
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
326 |
-
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
|
327 |
-
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
328 |
-
|
329 |
-
return prompt_embeds
|
330 |
-
|
331 |
-
def encode_prompt(
|
332 |
-
self,
|
333 |
-
prompt: Union[str, List[str]],
|
334 |
-
prompt_2: Union[str, List[str]],
|
335 |
-
device: Optional[torch.device] = None,
|
336 |
-
num_images_per_prompt: int = 1,
|
337 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
338 |
-
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
339 |
-
max_sequence_length: int = 512,
|
340 |
-
lora_scale: Optional[float] = None,
|
341 |
-
):
|
342 |
-
r"""
|
343 |
-
|
344 |
-
Args:
|
345 |
-
prompt (`str` or `List[str]`, *optional*):
|
346 |
-
prompt to be encoded
|
347 |
-
prompt_2 (`str` or `List[str]`, *optional*):
|
348 |
-
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
349 |
-
used in all text-encoders
|
350 |
-
device: (`torch.device`):
|
351 |
-
torch device
|
352 |
-
num_images_per_prompt (`int`):
|
353 |
-
number of images that should be generated per prompt
|
354 |
-
prompt_embeds (`torch.FloatTensor`, *optional*):
|
355 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
356 |
-
provided, text embeddings will be generated from `prompt` input argument.
|
357 |
-
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
358 |
-
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
359 |
-
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
360 |
-
lora_scale (`float`, *optional*):
|
361 |
-
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
362 |
-
"""
|
363 |
-
device = device or self._execution_device
|
364 |
-
|
365 |
-
# set lora scale so that monkey patched LoRA
|
366 |
-
# function of text encoder can correctly access it
|
367 |
-
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
|
368 |
-
self._lora_scale = lora_scale
|
369 |
-
|
370 |
-
# dynamically adjust the LoRA scale
|
371 |
-
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
372 |
-
scale_lora_layers(self.text_encoder, lora_scale)
|
373 |
-
if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
|
374 |
-
scale_lora_layers(self.text_encoder_2, lora_scale)
|
375 |
-
|
376 |
-
prompt = [prompt] if isinstance(prompt, str) else prompt
|
377 |
-
|
378 |
-
if prompt_embeds is None:
|
379 |
-
prompt_2 = prompt_2 or prompt
|
380 |
-
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
381 |
-
|
382 |
-
# We only use the pooled prompt output from the CLIPTextModel
|
383 |
-
pooled_prompt_embeds = self._get_clip_prompt_embeds(
|
384 |
-
prompt=prompt,
|
385 |
-
device=device,
|
386 |
-
num_images_per_prompt=num_images_per_prompt,
|
387 |
-
)
|
388 |
-
prompt_embeds = self._get_t5_prompt_embeds(
|
389 |
-
prompt=prompt_2,
|
390 |
-
num_images_per_prompt=num_images_per_prompt,
|
391 |
-
max_sequence_length=max_sequence_length,
|
392 |
-
device=device,
|
393 |
-
)
|
394 |
-
|
395 |
-
if self.text_encoder is not None:
|
396 |
-
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
397 |
-
# Retrieve the original scale by scaling back the LoRA layers
|
398 |
-
unscale_lora_layers(self.text_encoder, lora_scale)
|
399 |
-
|
400 |
-
if self.text_encoder_2 is not None:
|
401 |
-
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
402 |
-
# Retrieve the original scale by scaling back the LoRA layers
|
403 |
-
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
404 |
-
|
405 |
-
dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
|
406 |
-
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
|
407 |
-
|
408 |
-
return prompt_embeds, pooled_prompt_embeds, text_ids
|
409 |
-
|
410 |
-
def encode_image(self, image, device, num_images_per_prompt):
|
411 |
-
dtype = next(self.image_encoder.parameters()).dtype
|
412 |
-
|
413 |
-
if not isinstance(image, torch.Tensor):
|
414 |
-
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
415 |
-
|
416 |
-
image = image.to(device=device, dtype=dtype)
|
417 |
-
image_embeds = self.image_encoder(image).image_embeds
|
418 |
-
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
419 |
-
return image_embeds
|
420 |
-
|
421 |
-
def prepare_ip_adapter_image_embeds(
|
422 |
-
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt
|
423 |
-
):
|
424 |
-
image_embeds = []
|
425 |
-
if ip_adapter_image_embeds is None:
|
426 |
-
if not isinstance(ip_adapter_image, list):
|
427 |
-
ip_adapter_image = [ip_adapter_image]
|
428 |
-
|
429 |
-
if len(ip_adapter_image) != self.transformer.encoder_hid_proj.num_ip_adapters:
|
430 |
-
raise ValueError(
|
431 |
-
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters."
|
432 |
-
)
|
433 |
-
|
434 |
-
for single_ip_adapter_image in ip_adapter_image:
|
435 |
-
single_image_embeds = self.encode_image(single_ip_adapter_image, device, 1)
|
436 |
-
image_embeds.append(single_image_embeds[None, :])
|
437 |
-
else:
|
438 |
-
if not isinstance(ip_adapter_image_embeds, list):
|
439 |
-
ip_adapter_image_embeds = [ip_adapter_image_embeds]
|
440 |
-
|
441 |
-
if len(ip_adapter_image_embeds) != self.transformer.encoder_hid_proj.num_ip_adapters:
|
442 |
-
raise ValueError(
|
443 |
-
f"`ip_adapter_image_embeds` must have same length as the number of IP Adapters. Got {len(ip_adapter_image_embeds)} image embeds and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters."
|
444 |
-
)
|
445 |
-
|
446 |
-
for single_image_embeds in ip_adapter_image_embeds:
|
447 |
-
image_embeds.append(single_image_embeds)
|
448 |
-
|
449 |
-
ip_adapter_image_embeds = []
|
450 |
-
for single_image_embeds in image_embeds:
|
451 |
-
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
|
452 |
-
single_image_embeds = single_image_embeds.to(device=device)
|
453 |
-
ip_adapter_image_embeds.append(single_image_embeds)
|
454 |
-
|
455 |
-
return ip_adapter_image_embeds
|
456 |
-
|
457 |
-
def check_inputs(
|
458 |
-
self,
|
459 |
-
prompt,
|
460 |
-
prompt_2,
|
461 |
-
height,
|
462 |
-
width,
|
463 |
-
negative_prompt=None,
|
464 |
-
negative_prompt_2=None,
|
465 |
-
prompt_embeds=None,
|
466 |
-
negative_prompt_embeds=None,
|
467 |
-
pooled_prompt_embeds=None,
|
468 |
-
negative_pooled_prompt_embeds=None,
|
469 |
-
callback_on_step_end_tensor_inputs=None,
|
470 |
-
max_sequence_length=None,
|
471 |
-
):
|
472 |
-
if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
|
473 |
-
logger.warning(
|
474 |
-
f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
|
475 |
-
)
|
476 |
-
|
477 |
-
if callback_on_step_end_tensor_inputs is not None and not all(
|
478 |
-
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
479 |
-
):
|
480 |
-
raise ValueError(
|
481 |
-
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
482 |
-
)
|
483 |
-
|
484 |
-
if prompt is not None and prompt_embeds is not None:
|
485 |
-
raise ValueError(
|
486 |
-
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
487 |
-
" only forward one of the two."
|
488 |
-
)
|
489 |
-
elif prompt_2 is not None and prompt_embeds is not None:
|
490 |
-
raise ValueError(
|
491 |
-
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
492 |
-
" only forward one of the two."
|
493 |
-
)
|
494 |
-
elif prompt is None and prompt_embeds is None:
|
495 |
-
raise ValueError(
|
496 |
-
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
497 |
-
)
|
498 |
-
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
499 |
-
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
500 |
-
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
501 |
-
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
502 |
-
|
503 |
-
if negative_prompt is not None and negative_prompt_embeds is not None:
|
504 |
-
raise ValueError(
|
505 |
-
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
506 |
-
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
507 |
-
)
|
508 |
-
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
509 |
-
raise ValueError(
|
510 |
-
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
511 |
-
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
512 |
-
)
|
513 |
-
|
514 |
-
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
515 |
-
raise ValueError(
|
516 |
-
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
517 |
-
)
|
518 |
-
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
519 |
-
raise ValueError(
|
520 |
-
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
521 |
-
)
|
522 |
-
|
523 |
-
if max_sequence_length is not None and max_sequence_length > 512:
|
524 |
-
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
|
525 |
-
|
526 |
-
@staticmethod
|
527 |
-
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
|
528 |
-
latent_image_ids = torch.zeros(height, width, 3)
|
529 |
-
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
|
530 |
-
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
|
531 |
-
|
532 |
-
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
533 |
-
|
534 |
-
latent_image_ids = latent_image_ids.reshape(
|
535 |
-
latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
536 |
-
)
|
537 |
-
|
538 |
-
return latent_image_ids.to(device=device, dtype=dtype)
|
539 |
-
|
540 |
-
@staticmethod
|
541 |
-
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
|
542 |
-
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
|
543 |
-
latents = latents.permute(0, 2, 4, 1, 3, 5)
|
544 |
-
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
|
545 |
-
|
546 |
-
return latents
|
547 |
-
|
548 |
-
@staticmethod
|
549 |
-
def _unpack_latents(latents, height, width, vae_scale_factor):
|
550 |
-
batch_size, num_patches, channels = latents.shape
|
551 |
-
|
552 |
-
# VAE applies 8x compression on images but we must also account for packing which requires
|
553 |
-
# latent height and width to be divisible by 2.
|
554 |
-
height = 2 * (int(height) // (vae_scale_factor * 2))
|
555 |
-
width = 2 * (int(width) // (vae_scale_factor * 2))
|
556 |
-
|
557 |
-
latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
|
558 |
-
latents = latents.permute(0, 3, 1, 4, 2, 5)
|
559 |
-
|
560 |
-
latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
|
561 |
-
|
562 |
-
return latents
|
563 |
-
|
564 |
-
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_inpaint.StableDiffusion3InpaintPipeline._encode_vae_image
|
565 |
-
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
|
566 |
-
if isinstance(generator, list):
|
567 |
-
image_latents = [
|
568 |
-
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
569 |
-
for i in range(image.shape[0])
|
570 |
-
]
|
571 |
-
image_latents = torch.cat(image_latents, dim=0)
|
572 |
-
else:
|
573 |
-
image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
574 |
-
|
575 |
-
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
576 |
-
|
577 |
-
return image_latents
|
578 |
-
|
579 |
-
def enable_vae_slicing(self):
|
580 |
-
r"""
|
581 |
-
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
582 |
-
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
583 |
-
"""
|
584 |
-
self.vae.enable_slicing()
|
585 |
-
|
586 |
-
def disable_vae_slicing(self):
|
587 |
-
r"""
|
588 |
-
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
589 |
-
computing decoding in one step.
|
590 |
-
"""
|
591 |
-
self.vae.disable_slicing()
|
592 |
-
|
593 |
-
def enable_vae_tiling(self):
|
594 |
-
r"""
|
595 |
-
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
596 |
-
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
597 |
-
processing larger images.
|
598 |
-
"""
|
599 |
-
self.vae.enable_tiling()
|
600 |
-
|
601 |
-
def disable_vae_tiling(self):
|
602 |
-
r"""
|
603 |
-
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
604 |
-
computing decoding in one step.
|
605 |
-
"""
|
606 |
-
self.vae.disable_tiling()
|
607 |
-
|
608 |
-
def prepare_latents(
|
609 |
-
self,
|
610 |
-
image: torch.Tensor,
|
611 |
-
batch_size: int,
|
612 |
-
num_channels_latents: int,
|
613 |
-
height: int,
|
614 |
-
width: int,
|
615 |
-
dtype: torch.dtype,
|
616 |
-
device: torch.device,
|
617 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
618 |
-
latents: Optional[torch.Tensor] = None,
|
619 |
-
):
|
620 |
-
if isinstance(generator, list) and len(generator) != batch_size:
|
621 |
-
raise ValueError(
|
622 |
-
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
623 |
-
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
624 |
-
)
|
625 |
-
|
626 |
-
# VAE applies 8x compression on images but we must also account for packing which requires
|
627 |
-
# latent height and width to be divisible by 2.
|
628 |
-
height = 2 * (int(height) // (self.vae_scale_factor * 2))
|
629 |
-
width = 2 * (int(width) // (self.vae_scale_factor * 2))
|
630 |
-
shape = (batch_size, num_channels_latents, height, width)
|
631 |
-
|
632 |
-
image = image.to(device=device, dtype=dtype)
|
633 |
-
if image.shape[1] != self.latent_channels:
|
634 |
-
image_latents = self._encode_vae_image(image=image, generator=generator)
|
635 |
-
else:
|
636 |
-
image_latents = image
|
637 |
-
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
|
638 |
-
# expand init_latents for batch_size
|
639 |
-
additional_image_per_prompt = batch_size // image_latents.shape[0]
|
640 |
-
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
|
641 |
-
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
|
642 |
-
raise ValueError(
|
643 |
-
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
|
644 |
-
)
|
645 |
-
else:
|
646 |
-
image_latents = torch.cat([image_latents], dim=0)
|
647 |
-
|
648 |
-
image_latent_height, image_latent_width = image_latents.shape[2:]
|
649 |
-
image_latents = self._pack_latents(
|
650 |
-
image_latents, batch_size, num_channels_latents, image_latent_height, image_latent_width
|
651 |
-
)
|
652 |
-
|
653 |
-
latent_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
|
654 |
-
image_ids = self._prepare_latent_image_ids(
|
655 |
-
batch_size, image_latent_height // 2, image_latent_width // 2, device, dtype
|
656 |
-
)
|
657 |
-
# image ids are the same as latent ids with the first dimension set to 1 instead of 0
|
658 |
-
image_ids[..., 0] = 1
|
659 |
-
|
660 |
-
if latents is None:
|
661 |
-
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
662 |
-
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
|
663 |
-
else:
|
664 |
-
latents = latents.to(device=device, dtype=dtype)
|
665 |
-
|
666 |
-
return latents, image_latents, latent_ids, image_ids
|
667 |
-
|
668 |
-
@property
|
669 |
-
def guidance_scale(self):
|
670 |
-
return self._guidance_scale
|
671 |
-
|
672 |
-
@property
|
673 |
-
def joint_attention_kwargs(self):
|
674 |
-
return self._joint_attention_kwargs
|
675 |
-
|
676 |
-
@property
|
677 |
-
def num_timesteps(self):
|
678 |
-
return self._num_timesteps
|
679 |
-
|
680 |
-
@property
|
681 |
-
def current_timestep(self):
|
682 |
-
return self._current_timestep
|
683 |
-
|
684 |
-
@property
|
685 |
-
def interrupt(self):
|
686 |
-
return self._interrupt
|
687 |
-
|
688 |
-
@torch.no_grad()
|
689 |
-
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
690 |
-
def __call__(
|
691 |
-
self,
|
692 |
-
image: Optional[PipelineImageInput] = None,
|
693 |
-
prompt: Union[str, List[str]] = None,
|
694 |
-
prompt_2: Optional[Union[str, List[str]]] = None,
|
695 |
-
negative_prompt: Union[str, List[str]] = None,
|
696 |
-
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
697 |
-
true_cfg_scale: float = 1.0,
|
698 |
-
height: Optional[int] = None,
|
699 |
-
width: Optional[int] = None,
|
700 |
-
num_inference_steps: int = 28,
|
701 |
-
sigmas: Optional[List[float]] = None,
|
702 |
-
guidance_scale: float = 3.5,
|
703 |
-
num_images_per_prompt: Optional[int] = 1,
|
704 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
705 |
-
latents: Optional[torch.FloatTensor] = None,
|
706 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
707 |
-
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
708 |
-
ip_adapter_image: Optional[PipelineImageInput] = None,
|
709 |
-
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
710 |
-
negative_ip_adapter_image: Optional[PipelineImageInput] = None,
|
711 |
-
negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
712 |
-
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
713 |
-
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
714 |
-
output_type: Optional[str] = "pil",
|
715 |
-
return_dict: bool = True,
|
716 |
-
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
717 |
-
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
718 |
-
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
719 |
-
max_sequence_length: int = 512,
|
720 |
-
max_area: int = 1024**2,
|
721 |
-
):
|
722 |
-
r"""
|
723 |
-
Function invoked when calling the pipeline for generation.
|
724 |
-
|
725 |
-
Args:
|
726 |
-
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
727 |
-
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
|
728 |
-
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
|
729 |
-
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
|
730 |
-
list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
|
731 |
-
latents as `image`, but if passing latents directly it is not encoded again.
|
732 |
-
prompt (`str` or `List[str]`, *optional*):
|
733 |
-
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
734 |
-
instead.
|
735 |
-
prompt_2 (`str` or `List[str]`, *optional*):
|
736 |
-
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
737 |
-
will be used instead.
|
738 |
-
negative_prompt (`str` or `List[str]`, *optional*):
|
739 |
-
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
740 |
-
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
|
741 |
-
not greater than `1`).
|
742 |
-
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
743 |
-
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
744 |
-
`text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
|
745 |
-
true_cfg_scale (`float`, *optional*, defaults to 1.0):
|
746 |
-
When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance.
|
747 |
-
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
748 |
-
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
749 |
-
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
750 |
-
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
751 |
-
num_inference_steps (`int`, *optional*, defaults to 50):
|
752 |
-
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
753 |
-
expense of slower inference.
|
754 |
-
sigmas (`List[float]`, *optional*):
|
755 |
-
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
756 |
-
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
757 |
-
will be used.
|
758 |
-
guidance_scale (`float`, *optional*, defaults to 3.5):
|
759 |
-
Guidance scale as defined in [Classifier-Free Diffusion
|
760 |
-
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
|
761 |
-
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
|
762 |
-
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
|
763 |
-
the text `prompt`, usually at the expense of lower image quality.
|
764 |
-
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
765 |
-
The number of images to generate per prompt.
|
766 |
-
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
767 |
-
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
768 |
-
to make generation deterministic.
|
769 |
-
latents (`torch.FloatTensor`, *optional*):
|
770 |
-
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
771 |
-
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
772 |
-
tensor will ge generated by sampling using the supplied random `generator`.
|
773 |
-
prompt_embeds (`torch.FloatTensor`, *optional*):
|
774 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
775 |
-
provided, text embeddings will be generated from `prompt` input argument.
|
776 |
-
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
777 |
-
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
778 |
-
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
779 |
-
ip_adapter_image: (`PipelineImageInput`, *optional*):
|
780 |
-
Optional image input to work with IP Adapters.
|
781 |
-
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
782 |
-
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
783 |
-
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
|
784 |
-
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
785 |
-
negative_ip_adapter_image:
|
786 |
-
(`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
787 |
-
negative_ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
788 |
-
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
789 |
-
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
|
790 |
-
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
791 |
-
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
792 |
-
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
793 |
-
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
794 |
-
argument.
|
795 |
-
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
796 |
-
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
797 |
-
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
798 |
-
input argument.
|
799 |
-
output_type (`str`, *optional*, defaults to `"pil"`):
|
800 |
-
The output format of the generate image. Choose between
|
801 |
-
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
802 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
803 |
-
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
|
804 |
-
joint_attention_kwargs (`dict`, *optional*):
|
805 |
-
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
806 |
-
`self.processor` in
|
807 |
-
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
808 |
-
callback_on_step_end (`Callable`, *optional*):
|
809 |
-
A function that calls at the end of each denoising steps during the inference. The function is called
|
810 |
-
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
811 |
-
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
812 |
-
`callback_on_step_end_tensor_inputs`.
|
813 |
-
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
814 |
-
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
815 |
-
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
816 |
-
`._callback_tensor_inputs` attribute of your pipeline class.
|
817 |
-
max_sequence_length (`int` defaults to 512):
|
818 |
-
Maximum sequence length to use with the `prompt`.
|
819 |
-
max_area (`int`, defaults to `1024 ** 2`):
|
820 |
-
The maximum area of the generated image in pixels. The height and width will be adjusted to fit this
|
821 |
-
area while maintaining the aspect ratio.
|
822 |
-
|
823 |
-
Examples:
|
824 |
-
|
825 |
-
Returns:
|
826 |
-
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
|
827 |
-
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
|
828 |
-
images.
|
829 |
-
"""
|
830 |
-
|
831 |
-
height = height or self.default_sample_size * self.vae_scale_factor
|
832 |
-
width = width or self.default_sample_size * self.vae_scale_factor
|
833 |
-
|
834 |
-
original_height, original_width = height, width
|
835 |
-
aspect_ratio = width / height
|
836 |
-
width = round((max_area * aspect_ratio) ** 0.5)
|
837 |
-
height = round((max_area / aspect_ratio) ** 0.5)
|
838 |
-
|
839 |
-
multiple_of = self.vae_scale_factor * 2
|
840 |
-
width = width // multiple_of * multiple_of
|
841 |
-
height = height // multiple_of * multiple_of
|
842 |
-
|
843 |
-
if height != original_height or width != original_width:
|
844 |
-
logger.warning(
|
845 |
-
f"Generation `height` and `width` have been adjusted to {height} and {width} to fit the model requirements."
|
846 |
-
)
|
847 |
-
|
848 |
-
# 1. Check inputs. Raise error if not correct
|
849 |
-
self.check_inputs(
|
850 |
-
prompt,
|
851 |
-
prompt_2,
|
852 |
-
height,
|
853 |
-
width,
|
854 |
-
negative_prompt=negative_prompt,
|
855 |
-
negative_prompt_2=negative_prompt_2,
|
856 |
-
prompt_embeds=prompt_embeds,
|
857 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
858 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
859 |
-
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
860 |
-
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
861 |
-
max_sequence_length=max_sequence_length,
|
862 |
-
)
|
863 |
-
|
864 |
-
self._guidance_scale = guidance_scale
|
865 |
-
self._joint_attention_kwargs = joint_attention_kwargs
|
866 |
-
self._current_timestep = None
|
867 |
-
self._interrupt = False
|
868 |
-
|
869 |
-
# 2. Define call parameters
|
870 |
-
if prompt is not None and isinstance(prompt, str):
|
871 |
-
batch_size = 1
|
872 |
-
elif prompt is not None and isinstance(prompt, list):
|
873 |
-
batch_size = len(prompt)
|
874 |
-
else:
|
875 |
-
batch_size = prompt_embeds.shape[0]
|
876 |
-
|
877 |
-
device = self._execution_device
|
878 |
-
|
879 |
-
lora_scale = (
|
880 |
-
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
881 |
-
)
|
882 |
-
has_neg_prompt = negative_prompt is not None or (
|
883 |
-
negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None
|
884 |
-
)
|
885 |
-
do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
|
886 |
-
(
|
887 |
-
prompt_embeds,
|
888 |
-
pooled_prompt_embeds,
|
889 |
-
text_ids,
|
890 |
-
) = self.encode_prompt(
|
891 |
-
prompt=prompt,
|
892 |
-
prompt_2=prompt_2,
|
893 |
-
prompt_embeds=prompt_embeds,
|
894 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
895 |
-
device=device,
|
896 |
-
num_images_per_prompt=num_images_per_prompt,
|
897 |
-
max_sequence_length=max_sequence_length,
|
898 |
-
lora_scale=lora_scale,
|
899 |
-
)
|
900 |
-
if do_true_cfg:
|
901 |
-
(
|
902 |
-
negative_prompt_embeds,
|
903 |
-
negative_pooled_prompt_embeds,
|
904 |
-
negative_text_ids,
|
905 |
-
) = self.encode_prompt(
|
906 |
-
prompt=negative_prompt,
|
907 |
-
prompt_2=negative_prompt_2,
|
908 |
-
prompt_embeds=negative_prompt_embeds,
|
909 |
-
pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
910 |
-
device=device,
|
911 |
-
num_images_per_prompt=num_images_per_prompt,
|
912 |
-
max_sequence_length=max_sequence_length,
|
913 |
-
lora_scale=lora_scale,
|
914 |
-
)
|
915 |
-
|
916 |
-
# 3. Preprocess image
|
917 |
-
if not torch.is_tensor(image) or image.size(1) == self.latent_channels:
|
918 |
-
image_width, image_height = self.image_processor.get_default_height_width(image)
|
919 |
-
aspect_ratio = image_width / image_height
|
920 |
-
|
921 |
-
# Kontext is trained on specific resolutions, using one of them is recommended
|
922 |
-
_, image_width, image_height = min(
|
923 |
-
(abs(aspect_ratio - w / h), w, h) for w, h in PREFERRED_KONTEXT_RESOLUTIONS
|
924 |
-
)
|
925 |
-
image_width = image_width // multiple_of * multiple_of
|
926 |
-
image_height = image_height // multiple_of * multiple_of
|
927 |
-
image = self.image_processor.resize(image, image_height, image_width)
|
928 |
-
image = self.image_processor.preprocess(image, image_height, image_width)
|
929 |
-
|
930 |
-
# 4. Prepare latent variables
|
931 |
-
num_channels_latents = self.transformer.config.in_channels // 4
|
932 |
-
latents, image_latents, latent_ids, image_ids = self.prepare_latents(
|
933 |
-
image,
|
934 |
-
batch_size * num_images_per_prompt,
|
935 |
-
num_channels_latents,
|
936 |
-
height,
|
937 |
-
width,
|
938 |
-
prompt_embeds.dtype,
|
939 |
-
device,
|
940 |
-
generator,
|
941 |
-
latents,
|
942 |
-
)
|
943 |
-
latent_ids = torch.cat([latent_ids, image_ids], dim=0) # dim 0 is sequence dimension
|
944 |
-
|
945 |
-
# 5. Prepare timesteps
|
946 |
-
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
|
947 |
-
image_seq_len = latents.shape[1]
|
948 |
-
mu = calculate_shift(
|
949 |
-
image_seq_len,
|
950 |
-
self.scheduler.config.get("base_image_seq_len", 256),
|
951 |
-
self.scheduler.config.get("max_image_seq_len", 4096),
|
952 |
-
self.scheduler.config.get("base_shift", 0.5),
|
953 |
-
self.scheduler.config.get("max_shift", 1.15),
|
954 |
-
)
|
955 |
-
timesteps, num_inference_steps = retrieve_timesteps(
|
956 |
-
self.scheduler,
|
957 |
-
num_inference_steps,
|
958 |
-
device,
|
959 |
-
sigmas=sigmas,
|
960 |
-
mu=mu,
|
961 |
-
)
|
962 |
-
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
963 |
-
self._num_timesteps = len(timesteps)
|
964 |
-
|
965 |
-
# handle guidance
|
966 |
-
if self.transformer.config.guidance_embeds:
|
967 |
-
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
|
968 |
-
guidance = guidance.expand(latents.shape[0])
|
969 |
-
else:
|
970 |
-
guidance = None
|
971 |
-
|
972 |
-
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and (
|
973 |
-
negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None
|
974 |
-
):
|
975 |
-
negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
|
976 |
-
negative_ip_adapter_image = [negative_ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters
|
977 |
-
|
978 |
-
elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and (
|
979 |
-
negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None
|
980 |
-
):
|
981 |
-
ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
|
982 |
-
ip_adapter_image = [ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters
|
983 |
-
|
984 |
-
if self.joint_attention_kwargs is None:
|
985 |
-
self._joint_attention_kwargs = {}
|
986 |
-
|
987 |
-
image_embeds = None
|
988 |
-
negative_image_embeds = None
|
989 |
-
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
990 |
-
image_embeds = self.prepare_ip_adapter_image_embeds(
|
991 |
-
ip_adapter_image,
|
992 |
-
ip_adapter_image_embeds,
|
993 |
-
device,
|
994 |
-
batch_size * num_images_per_prompt,
|
995 |
-
)
|
996 |
-
if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None:
|
997 |
-
negative_image_embeds = self.prepare_ip_adapter_image_embeds(
|
998 |
-
negative_ip_adapter_image,
|
999 |
-
negative_ip_adapter_image_embeds,
|
1000 |
-
device,
|
1001 |
-
batch_size * num_images_per_prompt,
|
1002 |
-
)
|
1003 |
-
|
1004 |
-
# 6. Denoising loop
|
1005 |
-
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1006 |
-
for i, t in enumerate(timesteps):
|
1007 |
-
if self.interrupt:
|
1008 |
-
continue
|
1009 |
-
|
1010 |
-
self._current_timestep = t
|
1011 |
-
if image_embeds is not None:
|
1012 |
-
self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds
|
1013 |
-
|
1014 |
-
latent_model_input = torch.cat([latents, image_latents], dim=1)
|
1015 |
-
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
1016 |
-
|
1017 |
-
noise_pred = self.transformer(
|
1018 |
-
hidden_states=latent_model_input,
|
1019 |
-
timestep=timestep / 1000,
|
1020 |
-
guidance=guidance,
|
1021 |
-
pooled_projections=pooled_prompt_embeds,
|
1022 |
-
encoder_hidden_states=prompt_embeds,
|
1023 |
-
txt_ids=text_ids,
|
1024 |
-
img_ids=latent_ids,
|
1025 |
-
joint_attention_kwargs=self.joint_attention_kwargs,
|
1026 |
-
return_dict=False,
|
1027 |
-
)[0]
|
1028 |
-
noise_pred = noise_pred[:, : latents.size(1)]
|
1029 |
-
|
1030 |
-
if do_true_cfg:
|
1031 |
-
if negative_image_embeds is not None:
|
1032 |
-
self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds
|
1033 |
-
neg_noise_pred = self.transformer(
|
1034 |
-
hidden_states=latent_model_input,
|
1035 |
-
timestep=timestep / 1000,
|
1036 |
-
guidance=guidance,
|
1037 |
-
pooled_projections=negative_pooled_prompt_embeds,
|
1038 |
-
encoder_hidden_states=negative_prompt_embeds,
|
1039 |
-
txt_ids=negative_text_ids,
|
1040 |
-
img_ids=latent_ids,
|
1041 |
-
joint_attention_kwargs=self.joint_attention_kwargs,
|
1042 |
-
return_dict=False,
|
1043 |
-
)[0]
|
1044 |
-
neg_noise_pred = neg_noise_pred[:, : latents.size(1)]
|
1045 |
-
noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
|
1046 |
-
|
1047 |
-
# compute the previous noisy sample x_t -> x_t-1
|
1048 |
-
latents_dtype = latents.dtype
|
1049 |
-
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
1050 |
-
|
1051 |
-
if latents.dtype != latents_dtype:
|
1052 |
-
if torch.backends.mps.is_available():
|
1053 |
-
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
1054 |
-
latents = latents.to(latents_dtype)
|
1055 |
-
|
1056 |
-
if callback_on_step_end is not None:
|
1057 |
-
callback_kwargs = {}
|
1058 |
-
for k in callback_on_step_end_tensor_inputs:
|
1059 |
-
callback_kwargs[k] = locals()[k]
|
1060 |
-
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1061 |
-
|
1062 |
-
latents = callback_outputs.pop("latents", latents)
|
1063 |
-
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1064 |
-
|
1065 |
-
# call the callback, if provided
|
1066 |
-
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1067 |
-
progress_bar.update()
|
1068 |
-
|
1069 |
-
if XLA_AVAILABLE:
|
1070 |
-
xm.mark_step()
|
1071 |
-
|
1072 |
-
self._current_timestep = None
|
1073 |
-
|
1074 |
-
if output_type == "latent":
|
1075 |
-
image = latents
|
1076 |
-
else:
|
1077 |
-
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
1078 |
-
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
1079 |
-
image = self.vae.decode(latents, return_dict=False)[0]
|
1080 |
-
image = self.image_processor.postprocess(image, output_type=output_type)
|
1081 |
-
|
1082 |
-
# Offload all models
|
1083 |
-
self.maybe_free_model_hooks()
|
1084 |
-
|
1085 |
-
if not return_dict:
|
1086 |
-
return (image,)
|
1087 |
-
|
1088 |
-
return FluxPipelineOutput(images=image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|