Spaces:
Running
on
A10G
Running
on
A10G
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel, BitsAndBytesConfig | |
import tempfile | |
from huggingface_hub import HfApi | |
from huggingface_hub import list_models | |
from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
from bitsandbytes.nn import Linear4bit | |
from packaging import version | |
import os | |
def hello(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None) -> str: | |
# ^ expect a gr.OAuthProfile object as input to get the user's profile | |
# if the user is not logged in, profile will be None | |
if profile is None: | |
return "Hello Please Login to HuggingFace to use the BitsAndBytes Quantizer!" | |
return f"Hello {profile.name} ! Welcome to BitsAndBytes Quantizer" | |
def check_model_exists(oauth_token: gr.OAuthToken | None, username, model_name, quantized_model_name): | |
"""Check if a model exists in the user's Hugging Face repository.""" | |
try: | |
models = list_models(author=username, token=oauth_token.token) | |
model_names = [model.id for model in models] | |
if quantized_model_name : | |
repo_name = f"{username}/{quantized_model_name}" | |
else : | |
repo_name = f"{username}/{model_name.split('/')[-1]}-BNB-INT4" | |
if repo_name in model_names: | |
return f"Model '{repo_name}' already exists in your repository." | |
else: | |
return None # Model does not exist | |
except Exception as e: | |
return f"Error checking model existence: {str(e)}" | |
def create_model_card(model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4): | |
model_card = f"""--- | |
base_model: | |
- {model_name} | |
--- | |
# {model_name} (Quantized) | |
## Description | |
This model is a quantized version of the original model `{model_name}`. It has been quantized using int4 quantization with bitsandbytes. | |
## Quantization Details | |
- **Quantization Type**: int4 | |
- **bnb_4bit_quant_type**: {quant_type_4} | |
- **bnb_4bit_use_double_quant**: {double_quant_4} | |
- **bnb_4bit_compute_dtype**: {compute_type_4} | |
- **bnb_4bit_quant_storage**: {quant_storage_4} | |
## Usage | |
You can use this model in your applications by loading it directly from the Hugging Face Hub: | |
```python | |
from transformers import AutoModel | |
model = AutoModel.from_pretrained("{model_name}")""" | |
return model_card | |
def load_model(model_name, quantization_config, auth_token) : | |
return AutoModel.from_pretrained(model_name, quantization_config=quantization_config, device_map="cpu", use_auth_token=auth_token.token) | |
DTYPE_MAPPING = { | |
"int8": torch.int8, | |
"uint8": torch.uint8, | |
"float16": torch.float16, | |
"float32": torch.float32, | |
"bfloat16": torch.bfloat16, | |
} | |
def quantize_model(model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, auth_token=None): | |
print(f"Quantizing model: {quant_type_4}") | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_quant_type=quant_type_4, | |
bnb_4bit_use_double_quant=True if double_quant_4 == "True" else False, | |
bnb_4bit_quant_storage=DTYPE_MAPPING[quant_storage_4], | |
bnb_4bit_compute_dtype=DTYPE_MAPPING[compute_type_4], | |
) | |
model = AutoModel.from_pretrained(model_name, quantization_config=quantization_config, device_map="cpu", use_auth_token=auth_token.token) | |
for _ , module in model.named_modules(): | |
if isinstance(module, Linear4bit): | |
module.to("cuda") | |
module.to("cpu") | |
return model | |
def save_model(model, model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, username=None, auth_token=None, quantized_model_name=None, public=False): | |
print("Saving quantized model") | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_pretrained(tmpdirname, safe_serialization=True, use_auth_token=auth_token.token) | |
if quantized_model_name : | |
repo_name = f"{username}/{quantized_model_name}" | |
else : | |
repo_name = f"{username}/{model_name.split('/')[-1]}-BNB-INT4" | |
model_card = create_model_card(repo_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4) | |
with open(os.path.join(tmpdirname, "README.md"), "w") as f: | |
f.write(model_card) | |
# Push to Hub | |
api = HfApi(token=auth_token.token) | |
api.create_repo(repo_name, exist_ok=True, private=not public) | |
api.upload_folder( | |
folder_path=tmpdirname, | |
repo_id=repo_name, | |
repo_type="model", | |
) | |
return f'<h1> 🤗 DONE</h1><br/>Find your repo here: <a href="https://huggingface.co/{repo_name}" target="_blank" style="text-decoration:underline">{repo_name}</a>' | |
def quantize_and_save(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None, model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, quantized_model_name, public): | |
if oauth_token is None : | |
return "Error : Please Sign In to your HuggingFace account to use the quantizer" | |
if not profile: | |
return "Error: Please Sign In to your HuggingFace account to use the quantizer" | |
exists_message = check_model_exists(oauth_token, profile.username, model_name, quantized_model_name) | |
if exists_message : | |
return exists_message | |
# try: | |
quantized_model = quantize_model(model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, oauth_token) | |
return save_model(quantized_model, model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, profile.username, oauth_token, quantized_model_name, public) | |
# except Exception as e : | |
# print(e) | |
# return f"An error occurred: {str(e)}" | |
css="""/* Custom CSS to allow scrolling */ | |
.gradio-container {overflow-y: auto;} | |
/* Fix alignment for radio buttons and checkboxes */ | |
.gradio-radio { | |
display: flex !important; | |
align-items: center !important; | |
margin: 10px 0 !important; | |
} | |
.gradio-checkbox { | |
display: flex !important; | |
align-items: center !important; | |
margin: 10px 0 !important; | |
} | |
/* Ensure consistent spacing and alignment */ | |
.gradio-dropdown, .gradio-textbox, .gradio-radio, .gradio-checkbox { | |
margin-bottom: 12px !important; | |
width: 100% !important; | |
} | |
/* Align radio buttons and checkboxes horizontally */ | |
.option-row { | |
display: flex !important; | |
justify-content: space-between !important; | |
align-items: center !important; | |
gap: 20px !important; | |
margin-bottom: 12px !important; | |
} | |
.option-row .gradio-radio, .option-row .gradio-checkbox { | |
margin: 0 !important; | |
flex: 1 !important; | |
} | |
/* Horizontally align radio button options with text */ | |
.gradio-radio label { | |
display: flex !important; | |
align-items: center !important; | |
} | |
.gradio-radio input[type="radio"] { | |
margin-right: 5px !important; | |
} | |
/* Remove padding and margin from model name textbox for better alignment */ | |
.model-name-textbox { | |
padding-left: 0 !important; | |
padding-right: 0 !important; | |
margin-left: 0 !important; | |
margin-right: 0 !important; | |
} | |
/* Quantize button styling with glow effect */ | |
button[variant="primary"] { | |
background: linear-gradient(135deg, #3B82F6, #10B981) !important; | |
color: white !important; | |
padding: 16px 32px !important; | |
font-size: 1.1rem !important; | |
font-weight: 700 !important; | |
border: none !important; | |
border-radius: 12px !important; | |
box-shadow: 0 0 15px rgba(59, 130, 246, 0.5) !important; | |
transition: all 0.3s cubic-bezier(0.25, 0.8, 0.25, 1) !important; | |
position: relative; | |
overflow: hidden; | |
animation: glow 1.5s ease-in-out infinite alternate; | |
} | |
button[variant="primary"]::before { | |
content: "✨ "; | |
} | |
button[variant="primary"]:hover { | |
transform: translateY(-5px) scale(1.05) !important; | |
box-shadow: 0 10px 25px rgba(59, 130, 246, 0.7) !important; | |
} | |
@keyframes glow { | |
from { | |
box-shadow: 0 0 10px rgba(59, 130, 246, 0.5); | |
} | |
to { | |
box-shadow: 0 0 20px rgba(59, 130, 246, 0.8), 0 0 30px rgba(16, 185, 129, 0.5); | |
} | |
} | |
/* Login button styling with glow effect */ | |
#login-button { | |
background: linear-gradient(135deg, #3B82F6, #10B981) !important; | |
color: white !important; | |
font-weight: 700 !important; | |
border: none !important; | |
border-radius: 12px !important; | |
box-shadow: 0 0 15px rgba(59, 130, 246, 0.5) !important; | |
transition: all 0.3s cubic-bezier(0.25, 0.8, 0.25, 1) !important; | |
position: relative; | |
overflow: hidden; | |
animation: glow 1.5s ease-in-out infinite alternate; | |
max-width: 300px !important; | |
margin: 0 auto !important; | |
} | |
#login-button::before { | |
content: "🔑 "; | |
display: inline-block !important; | |
vertical-align: middle !important; | |
margin-right: 5px !important; | |
line-height: normal !important; | |
} | |
#login-button:hover { | |
transform: translateY(-3px) scale(1.03) !important; | |
box-shadow: 0 10px 25px rgba(59, 130, 246, 0.7) !important; | |
} | |
#login-button::after { | |
content: ""; | |
position: absolute; | |
top: 0; | |
left: -100%; | |
width: 100%; | |
height: 100%; | |
background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.2), transparent); | |
transition: 0.5s; | |
} | |
#login-button:hover::after { | |
left: 100%; | |
} | |
/* Toggle instructions button styling */ | |
#toggle-button { | |
background: linear-gradient(135deg, #3B82F6, #10B981) !important; | |
color: white !important; | |
font-size: 0.85rem !important; | |
font-weight: 600 !important; | |
padding: 8px 16px !important; | |
border: none !important; | |
border-radius: 8px !important; | |
box-shadow: 0 2px 10px rgba(59, 130, 246, 0.3) !important; | |
transition: all 0.3s ease !important; | |
margin: 0.5rem auto 1.5rem auto !important; | |
display: block !important; | |
max-width: 200px !important; | |
text-align: center !important; | |
position: relative; | |
overflow: hidden; | |
} | |
#toggle-button:hover { | |
transform: translateY(-2px) !important; | |
box-shadow: 0 4px 12px rgba(59, 130, 246, 0.5) !important; | |
} | |
#toggle-button::after { | |
content: ""; | |
position: absolute; | |
top: 0; | |
left: -100%; | |
width: 100%; | |
height: 100%; | |
background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.2), transparent); | |
transition: 0.5s; | |
} | |
#toggle-button:hover::after { | |
left: 100%; | |
} | |
""" | |
with gr.Blocks(theme=gr.themes.Ocean(), css=css) as demo: | |
gr.Markdown( | |
""" | |
# 🤗 LLM Model BitsAndBytes Quantizer ✨ | |
""" | |
) | |
gr.LoginButton(elem_id="login-button", elem_classes="center-button", min_width=250) | |
m1 = gr.Markdown() | |
demo.load(hello, inputs=None, outputs=m1) | |
instructions_visible = gr.State(False) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
model_name = HuggingfaceHubSearch( | |
label="🔍 Hub Model ID", | |
placeholder="Search for model id on Huggingface", | |
search_type="model", | |
) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown( | |
""" | |
### ⚙️ Model Quantization Type Settings | |
""" | |
) | |
quant_type_4 = gr.Dropdown( | |
info="The quantization data type in the bnb.nn.Linear4Bit layers", | |
choices=["fp4", "nf4"], | |
value="fp4", | |
visible=True, | |
show_label=False | |
) | |
compute_type_4 = gr.Dropdown( | |
info="The compute type for the model", | |
choices=["float16", "bfloat16", "float32"], | |
value="float32", | |
visible=True, | |
show_label=False | |
) | |
quant_storage_4 = gr.Dropdown( | |
info="The storage type for the model", | |
choices=["float16", "float32", "int8", "uint8", "bfloat16"], | |
value="uint8", | |
visible=True, | |
show_label=False | |
) | |
gr.Markdown( | |
""" | |
### 🔄 Double Quantization Settings | |
""" | |
) | |
with gr.Row(elem_classes="option-row"): | |
double_quant_4 = gr.Radio( | |
["False", "True"], | |
info="Use Double Quant", | |
visible=True, | |
value="False", | |
show_label=False | |
) | |
gr.Markdown( | |
""" | |
### 💾 Saving Settings | |
""" | |
) | |
with gr.Row(): | |
quantized_model_name = gr.Textbox( | |
label="✏️ Model Name", | |
info="Model Name (optional : to override default)", | |
value="", | |
interactive=True, | |
elem_classes="model-name-textbox", | |
show_label=False, | |
) | |
with gr.Row(): | |
public = gr.Checkbox( | |
label="🌐 Make model public", | |
info="If checked, the model will be publicly accessible", | |
value=False, | |
interactive=True, | |
show_label=True | |
) | |
with gr.Column(): | |
quantize_button = gr.Button("🚀 Quantize and Save Model", variant="primary") | |
output_link = gr.Markdown(label="🔗 Quantized Model Link", container=True, min_height=80) | |
quantize_button.click( | |
fn=quantize_and_save, | |
inputs=[model_name, quant_type_4, double_quant_4, compute_type_4, quant_storage_4, quantized_model_name, public], | |
outputs=[output_link] | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) | |
# Launch the app | |
# demo.launch(share=True, debug=True) | |