Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,435 Bytes
db6a3b7 6163a25 db6a3b7 cd41f5f 690b53e db6a3b7 9880f3d 7d475c1 db6a3b7 9880f3d db6a3b7 9880f3d db6a3b7 bebd65f db6a3b7 bd46f72 cd41f5f d7b1815 cd41f5f b7b00e2 db894f7 cd41f5f db6a3b7 b7b00e2 9880f3d b7b00e2 9880f3d cd41f5f 3057b36 cd41f5f f27c596 7d475c1 15fe7bc 5da0f91 b7b00e2 7d475c1 b7b00e2 cd41f5f 9880f3d db6a3b7 b7b00e2 cd41f5f b7b00e2 690b53e b7b00e2 db6a3b7 cd41f5f db6a3b7 b7b00e2 cd41f5f 7d475c1 691c0db 7d475c1 49c6f1e f27c596 49c6f1e bd46f72 49c6f1e bd46f72 49c6f1e 66abfd9 49c6f1e 691c0db db6a3b7 49c6f1e 2f6eaed 49c6f1e 4f4fe53 49c6f1e db894f7 b7b00e2 49c6f1e f7b7abd 2e78ab8 db6a3b7 cd41f5f db6a3b7 cd41f5f db6a3b7 cd41f5f db6a3b7 f27c596 2e78ab8 db6a3b7 f7b7abd db6a3b7 f7b7abd db6a3b7 e9f9c58 db6a3b7 cd41f5f db6a3b7 cd41f5f db6a3b7 6444d31 db6a3b7 c666caf f7b7abd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import gradio as gr
import spaces
import os
import shutil
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
import pydantic
print(pydantic.__version__)
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)
def start_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
def end_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
shutil.rmtree(user_dir)
def preprocess_image(image: Image.Image) -> Image.Image:
processed_image = pipeline.preprocess_image(image)
return processed_image
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
return gs, mesh
def get_seed(randomize_seed: bool, seed: int) -> int:
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
@spaces.GPU
def image_to_3d(
image: Image.Image,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
req: gr.Request,
) -> Tuple[dict, str]:
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
outputs = pipeline.run(
image,
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
# Solo usamos el video de color, eliminamos la concatenación
video = video
video_path = os.path.join(user_dir, 'sample.mp4')
imageio.mimsave(video_path, video, fps=15)
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
torch.cuda.empty_cache()
return state, video_path
@spaces.GPU(duration=90)
def extract_glb(
state: dict,
mesh_simplify: float,
texture_size: int,
req: gr.Request,
) -> Tuple[str, str]:
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
gs, mesh = unpack_state(state)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = os.path.join(user_dir, 'sample.glb')
glb.export(glb_path)
torch.cuda.empty_cache()
return glb_path, glb_path
def split_image(image: Image.Image) -> List[Image.Image]:
image = np.array(image)
alpha = image[..., 3]
alpha = np.any(alpha>0, axis=0)
start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
images = []
for s, e in zip(start_pos, end_pos):
images.append(Image.fromarray(image[:, s:e+1]))
return [preprocess_image(image) for image in images]
with gr.Blocks(delete_cache=(600, 600)) as demo:
gr.Markdown("""
# UTPL - Conversión de Imágen a objetos 3D usando IA
### Tesis: *"Objetos tridimensionales creados por IA: Innovación en entornos virtuales"*
**Autor:** Carlos Vargas
**Base técnica:** Adaptación de [TRELLIS](https://trellis3d.github.io/) (herramienta de código abierto para generación 3D)
**Propósito educativo:** Demostraciones académicas e Investigación en modelado 3D automático
""")
with gr.Row(equal_height=False):
# Left column (Controls)
with gr.Column(scale=2, min_width=400):
with gr.Tabs():
with gr.Tab(label="Input Image"):
image_prompt = gr.Image(
label="Image Prompt",
format="png",
image_mode="RGBA",
type="pil",
height=300,
show_label=False
)
with gr.Accordion(".Generation Settings", open=False):
with gr.Column(variant="panel"):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Group():
gr.Markdown("#### Stage 1: Structure")
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Steps", value=12, step=1)
with gr.Group():
gr.Markdown("#### Stage 2: Detail")
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Steps", value=12, step=1)
generate_btn = gr.Button("Generate 3D Asset", variant="primary", size="lg")
with gr.Accordion("GLB Export Settings", open=False):
with gr.Column(variant="panel"):
mesh_simplify = gr.Slider(0.5, 0.98, label="Simplify Mesh", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
extract_glb_btn = gr.Button("Export GLB", interactive=False, size="lg")
# Right column (Outputs)
with gr.Column(scale=3, min_width=600):
with gr.Group():
video_output = gr.Video(
label="3D Preview",
autoplay=True,
loop=True,
height=300,
show_label=False
)
model_output = gr.Model3D(
label="3D Model Viewer",
height=400
)
with gr.Row():
download_glb = gr.DownloadButton(
label="Download GLB File",
interactive=False,
variant="secondary",
size="lg"
)
output_buf = gr.State()
demo.load(start_session)
demo.unload(end_session)
image_prompt.upload(
preprocess_image,
inputs=[image_prompt],
outputs=[image_prompt],
)
generate_btn.click(
get_seed,
inputs=[randomize_seed, seed],
outputs=[seed],
).then(
image_to_3d,
inputs=[image_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
outputs=[output_buf, video_output],
).then(
lambda: gr.Button(interactive=True),
outputs=[extract_glb_btn],
)
video_output.clear(
lambda: gr.Button(interactive=False),
outputs=[extract_glb_btn],
)
extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb],
).then(
lambda: gr.Button(interactive=True),
outputs=[download_glb],
)
model_output.clear(
lambda: gr.Button(interactive=False),
outputs=[download_glb],
)
if __name__ == "__main__":
pipeline = TrellisImageTo3DPipeline.from_pretrained("cavargas10/TRELLIS")
pipeline.cuda()
try:
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
except:
pass
demo.launch() |