File size: 10,852 Bytes
db6a3b7
6163a25
db6a3b7
cd41f5f
690b53e
db6a3b7
9880f3d
7d475c1
db6a3b7
9880f3d
db6a3b7
 
9880f3d
db6a3b7
bebd65f
0b969ff
 
 
 
bebd65f
db6a3b7
bd46f72
cd41f5f
d7b1815
 
cd41f5f
0b969ff
 
 
cd41f5f
 
 
0b969ff
 
 
 
 
 
 
 
 
 
 
 
cd41f5f
b7b00e2
0b969ff
db894f7
0b969ff
cd41f5f
db6a3b7
b7b00e2
9880f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7b00e2
9880f3d
cd41f5f
0b969ff
 
 
cd41f5f
3057b36
cd41f5f
 
 
 
 
 
 
 
 
0b969ff
 
 
 
f27c596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b969ff
7d475c1
15fe7bc
0b969ff
5da0f91
 
b7b00e2
7d475c1
b7b00e2
cd41f5f
0b969ff
9880f3d
db6a3b7
b7b00e2
cd41f5f
 
 
 
 
 
0b969ff
 
 
 
b7b00e2
690b53e
b7b00e2
db6a3b7
0b969ff
cd41f5f
0b969ff
db6a3b7
 
b7b00e2
 
 
 
 
 
 
 
 
 
 
cd41f5f
7d475c1
691c0db
 
 
 
 
7d475c1
 
49c6f1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f27c596
49c6f1e
 
 
 
bd46f72
49c6f1e
bd46f72
49c6f1e
 
66abfd9
49c6f1e
691c0db
 
db6a3b7
49c6f1e
 
 
 
 
 
 
 
 
2f6eaed
49c6f1e
4f4fe53
49c6f1e
db894f7
b7b00e2
49c6f1e
 
 
 
 
 
f7b7abd
2e78ab8
db6a3b7
cd41f5f
 
 
db6a3b7
 
 
cd41f5f
db6a3b7
 
 
cd41f5f
 
 
 
db6a3b7
f27c596
2e78ab8
db6a3b7
f7b7abd
 
db6a3b7
 
 
f7b7abd
 
db6a3b7
 
 
e9f9c58
 
db6a3b7
 
cd41f5f
db6a3b7
 
 
 
cd41f5f
db6a3b7
 
 
 
6444d31
db6a3b7
c666caf
 
 
 
f7b7abd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import gradio as gr
import spaces 
import os
import shutil
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
import pydantic
import logging

logging.basicConfig(level=logging.INFO, format='%(asctime)s - HF_SPACE - %(levelname)s - %(message)s')

print(pydantic.__version__)

MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)

def start_session(req: gr.Request):
    session_hash = str(req.session_hash)
    user_dir = os.path.join(TMP_DIR, session_hash)
    logging.info(f"START SESSION: Creando directorio para la sesión {session_hash} en {user_dir}")
    os.makedirs(user_dir, exist_ok=True)
    
def end_session(req: gr.Request):
    session_hash = str(req.session_hash)
    user_dir = os.path.join(TMP_DIR, session_hash)
    logging.info(f"END SESSION: Intentando eliminar el directorio de la sesión {session_hash} en {user_dir}")
    # Hacemos la eliminación más robusta.
    if os.path.exists(user_dir):
        try:
            shutil.rmtree(user_dir)
            logging.info(f"Directorio de la sesión {session_hash} eliminado correctamente.")
        except Exception as e:
            logging.error(f"Error al eliminar el directorio de la sesión {session_hash}: {e}")
    else:
        logging.warning(f"El directorio de la sesión {session_hash} no fue encontrado al intentar eliminarlo. Es posible que ya haya sido limpiado.")

def preprocess_image(image: Image.Image) -> Image.Image:
    logging.info("Preprocesando imagen...")
    processed_image = pipeline.preprocess_image(image)
    logging.info("Imagen preprocesada correctamente.")
    return processed_image

def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
    return {
        'gaussian': {
            **gs.init_params,
            '_xyz': gs._xyz.cpu().numpy(),
            '_features_dc': gs._features_dc.cpu().numpy(),
            '_scaling': gs._scaling.cpu().numpy(),
            '_rotation': gs._rotation.cpu().numpy(),
            '_opacity': gs._opacity.cpu().numpy(),
        },
        'mesh': {
            'vertices': mesh.vertices.cpu().numpy(),
            'faces': mesh.faces.cpu().numpy(),
        },
    }
    
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
    gs = Gaussian(
        aabb=state['gaussian']['aabb'],
        sh_degree=state['gaussian']['sh_degree'],
        mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
        scaling_bias=state['gaussian']['scaling_bias'],
        opacity_bias=state['gaussian']['opacity_bias'],
        scaling_activation=state['gaussian']['scaling_activation'],
    )
    gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
    gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
    gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
    gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
    gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
    
    mesh = edict(
        vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
        faces=torch.tensor(state['mesh']['faces'], device='cuda'),
    )
    
    return gs, mesh

def get_seed(randomize_seed: bool, seed: int) -> int:
    new_seed = np.random.randint(0, MAX_SEED) if randomize_seed else seed
    logging.info(f"Usando seed: {new_seed}")
    return new_seed

@spaces.GPU
def image_to_3d(
    image: Image.Image,
    seed: int,
    ss_guidance_strength: float,
    ss_sampling_steps: int,
    slat_guidance_strength: float,
    slat_sampling_steps: int,
    req: gr.Request,
) -> Tuple[dict, str]:
    session_hash = str(req.session_hash)
    logging.info(f"[{session_hash}] Iniciando image_to_3d...")
    user_dir = os.path.join(TMP_DIR, session_hash)

    outputs = pipeline.run(
        image,
        seed=seed,
        formats=["gaussian", "mesh"],
        preprocess_image=False,
        sparse_structure_sampler_params={
            "steps": ss_sampling_steps,
            "cfg_strength": ss_guidance_strength,
        },
        slat_sampler_params={
            "steps": slat_sampling_steps,
            "cfg_strength": slat_guidance_strength,
        },
    )
   
    logging.info(f"[{session_hash}] Generación del modelo completada. Renderizando video...")
    video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
    video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']

    video = video
    
    video_path = os.path.join(user_dir, 'sample.mp4')
    imageio.mimsave(video_path, video, fps=15)
    state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
    torch.cuda.empty_cache()
    logging.info(f"[{session_hash}] Video renderizado y estado empaquetado. Devolviendo: {video_path}")
    return state, video_path

@spaces.GPU(duration=90)
def extract_glb(
    state: dict,
    mesh_simplify: float,
    texture_size: int,
    req: gr.Request,
) -> Tuple[str, str]:
    session_hash = str(req.session_hash)
    logging.info(f"[{session_hash}] Iniciando extract_glb...")
    user_dir = os.path.join(TMP_DIR, session_hash)
    
    gs, mesh = unpack_state(state)
    glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
    glb_path = os.path.join(user_dir, 'sample.glb')
    glb.export(glb_path)
    
    torch.cuda.empty_cache()
    logging.info(f"[{session_hash}] GLB extraído. Devolviendo: {glb_path}")
    return glb_path, glb_path

def split_image(image: Image.Image) -> List[Image.Image]:
    image = np.array(image)
    alpha = image[..., 3]
    alpha = np.any(alpha>0, axis=0)
    start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
    end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
    images = []
    for s, e in zip(start_pos, end_pos):
        images.append(Image.fromarray(image[:, s:e+1]))
    return [preprocess_image(image) for image in images]

with gr.Blocks(delete_cache=(600, 600)) as demo:
    gr.Markdown("""
    # UTPL - Conversión de Imágen a objetos 3D usando IA  
    ### Tesis: *"Objetos tridimensionales creados por IA: Innovación en entornos virtuales"*  
    **Autor:** Carlos Vargas  
    **Base técnica:** Adaptación de [TRELLIS](https://trellis3d.github.io/) (herramienta de código abierto para generación 3D)  
    **Propósito educativo:** Demostraciones académicas e Investigación en modelado 3D automático  
    """)
    
    with gr.Row(equal_height=False):
        # Left column (Controls)
        with gr.Column(scale=2, min_width=400):
            with gr.Tabs():
                with gr.Tab(label="Input Image"):
                    image_prompt = gr.Image(
                        label="Image Prompt", 
                        format="png", 
                        image_mode="RGBA", 
                        type="pil", 
                        height=300,
                        show_label=False
                    )
            
            with gr.Accordion(".Generation Settings", open=False):
                with gr.Column(variant="panel"):
                    seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
                    randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                    
                    with gr.Group():
                        gr.Markdown("#### Stage 1: Structure")
                        ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance", value=7.5, step=0.1)
                        ss_sampling_steps = gr.Slider(1, 50, label="Steps", value=12, step=1)
                    
                    with gr.Group():
                        gr.Markdown("#### Stage 2: Detail")
                        slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance", value=3.0, step=0.1)
                        slat_sampling_steps = gr.Slider(1, 50, label="Steps", value=12, step=1)
            
            generate_btn = gr.Button("Generate 3D Asset", variant="primary", size="lg")
            
            with gr.Accordion("GLB Export Settings", open=False):
                with gr.Column(variant="panel"):
                    mesh_simplify = gr.Slider(0.5, 0.98, label="Simplify Mesh", value=0.95, step=0.01)
                    texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
            
            extract_glb_btn = gr.Button("Export GLB", interactive=False, size="lg")

        with gr.Column(scale=3, min_width=600):
            with gr.Group():
                video_output = gr.Video(
                    label="3D Preview", 
                    autoplay=True, 
                    loop=True, 
                    height=300,
                    show_label=False
                )
                model_output = gr.Model3D(
                    label="3D Model Viewer", 
                    height=400
                )
            
            with gr.Row():
                download_glb = gr.DownloadButton(
                    label="Download GLB File", 
                    interactive=False,
                    variant="secondary",
                    size="lg"
                )

    output_buf = gr.State()

    demo.load(start_session)
    demo.unload(end_session)
    
    image_prompt.upload(
        preprocess_image,
        inputs=[image_prompt],
        outputs=[image_prompt],
    )

    generate_btn.click(
        get_seed,
        inputs=[randomize_seed, seed],
        outputs=[seed],
    ).then(
        image_to_3d,
        inputs=[image_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
        outputs=[output_buf, video_output],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[extract_glb_btn],
    )

    video_output.clear(
        lambda: gr.Button(interactive=False),
        outputs=[extract_glb_btn],
    )

    extract_glb_btn.click(
        extract_glb,
        inputs=[output_buf, mesh_simplify, texture_size],
        outputs=[model_output, download_glb],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_glb],
    )

    model_output.clear(
        lambda: gr.Button(interactive=False),
        outputs=[download_glb],
    )
    
if __name__ == "__main__":
    pipeline = TrellisImageTo3DPipeline.from_pretrained("cavargas10/TRELLIS")
    pipeline.cuda()
    try:
        pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))    # Preload rembg
    except:
        pass
    demo.launch()