Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -176,6 +176,7 @@ def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
|
176 |
torch.cuda.empty_cache()
|
177 |
return gaussian_path, gaussian_path
|
178 |
|
|
|
179 |
# Gradio Interface
|
180 |
# Gradio Interface
|
181 |
with gr.Blocks() as demo:
|
@@ -183,10 +184,8 @@ with gr.Blocks() as demo:
|
|
183 |
## Game Asset Generation to 3D with FLUX and TRELLIS
|
184 |
* Enter a prompt to generate a game asset image, then convert it to 3D
|
185 |
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
|
186 |
-
* [TRELLIS Model](https://huggingface.co/JeffreyXiang/TRELLIS-image-large) [Trellis Github](https://github.com/microsoft/TRELLIS) [Flux-Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev)
|
187 |
-
* [Flux Game Assets LoRA](https://huggingface.co/gokaygokay/Flux-Game-Assets-LoRA-v2) [Hyper FLUX 8Steps LoRA](https://huggingface.co/ByteDance/Hyper-SD) [safetensors to GGUF for Flux](https://github.com/ruSauron/to-gguf-bat) [Thanks to John6666](https://huggingface.co/John6666)
|
188 |
""")
|
189 |
-
|
190 |
with gr.Row():
|
191 |
with gr.Column():
|
192 |
# Flux image generation inputs
|
@@ -199,7 +198,7 @@ with gr.Blocks() as demo:
|
|
199 |
height = gr.Slider(512, 1024, label="Height", value=1024, step=16)
|
200 |
with gr.Row():
|
201 |
guidance_scale = gr.Slider(0.0, 10.0, label="Guidance Scale", value=3.5, step=0.1)
|
202 |
-
|
203 |
# Botones separados
|
204 |
generate_image_btn = gr.Button("Generar Imagen")
|
205 |
generate_video_btn = gr.Button("Generar Video", interactive=False)
|
@@ -207,17 +206,28 @@ with gr.Blocks() as demo:
|
|
207 |
with gr.Column():
|
208 |
generated_image = gr.Image(label="Generated Asset", type="pil")
|
209 |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True)
|
210 |
-
|
211 |
model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=8.0, height=400)
|
212 |
-
|
213 |
with gr.Row():
|
214 |
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
215 |
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
216 |
-
|
217 |
with gr.Row():
|
218 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
219 |
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
|
220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
# Estado para almacenar la imagen generada temporalmente
|
222 |
temp_image_state = gr.State()
|
223 |
output_buf = gr.State()
|
@@ -239,7 +249,14 @@ with gr.Blocks() as demo:
|
|
239 |
# Generar video
|
240 |
generate_video_btn.click(
|
241 |
image_to_3d,
|
242 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
outputs=[output_buf, video_output],
|
244 |
).then(
|
245 |
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
@@ -265,7 +282,6 @@ with gr.Blocks() as demo:
|
|
265 |
lambda: gr.Button(interactive=True),
|
266 |
outputs=[download_gs],
|
267 |
)
|
268 |
-
|
269 |
# Initialize both pipelines
|
270 |
if __name__ == "__main__":
|
271 |
from diffusers import FluxTransformer2DModel, FluxPipeline, BitsAndBytesConfig, GGUFQuantizationConfig
|
|
|
176 |
torch.cuda.empty_cache()
|
177 |
return gaussian_path, gaussian_path
|
178 |
|
179 |
+
# Gradio Interface
|
180 |
# Gradio Interface
|
181 |
# Gradio Interface
|
182 |
with gr.Blocks() as demo:
|
|
|
184 |
## Game Asset Generation to 3D with FLUX and TRELLIS
|
185 |
* Enter a prompt to generate a game asset image, then convert it to 3D
|
186 |
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
|
|
|
|
|
187 |
""")
|
188 |
+
|
189 |
with gr.Row():
|
190 |
with gr.Column():
|
191 |
# Flux image generation inputs
|
|
|
198 |
height = gr.Slider(512, 1024, label="Height", value=1024, step=16)
|
199 |
with gr.Row():
|
200 |
guidance_scale = gr.Slider(0.0, 10.0, label="Guidance Scale", value=3.5, step=0.1)
|
201 |
+
|
202 |
# Botones separados
|
203 |
generate_image_btn = gr.Button("Generar Imagen")
|
204 |
generate_video_btn = gr.Button("Generar Video", interactive=False)
|
|
|
206 |
with gr.Column():
|
207 |
generated_image = gr.Image(label="Generated Asset", type="pil")
|
208 |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True)
|
209 |
+
|
210 |
model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=8.0, height=400)
|
211 |
+
|
212 |
with gr.Row():
|
213 |
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
214 |
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
215 |
+
|
216 |
with gr.Row():
|
217 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
218 |
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
|
219 |
+
|
220 |
+
# Variables adicionales para la generaci贸n 3D
|
221 |
+
with gr.Accordion("3D Generation Settings", open=False):
|
222 |
+
gr.Markdown("Stage 1: Sparse Structure Generation")
|
223 |
+
with gr.Row():
|
224 |
+
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
|
225 |
+
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
226 |
+
gr.Markdown("Stage 2: Structured Latent Generation")
|
227 |
+
with gr.Row():
|
228 |
+
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
229 |
+
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
230 |
+
|
231 |
# Estado para almacenar la imagen generada temporalmente
|
232 |
temp_image_state = gr.State()
|
233 |
output_buf = gr.State()
|
|
|
249 |
# Generar video
|
250 |
generate_video_btn.click(
|
251 |
image_to_3d,
|
252 |
+
inputs=[
|
253 |
+
temp_image_state,
|
254 |
+
seed,
|
255 |
+
ss_guidance_strength,
|
256 |
+
ss_sampling_steps,
|
257 |
+
slat_guidance_strength,
|
258 |
+
slat_sampling_steps
|
259 |
+
],
|
260 |
outputs=[output_buf, video_output],
|
261 |
).then(
|
262 |
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
|
|
282 |
lambda: gr.Button(interactive=True),
|
283 |
outputs=[download_gs],
|
284 |
)
|
|
|
285 |
# Initialize both pipelines
|
286 |
if __name__ == "__main__":
|
287 |
from diffusers import FluxTransformer2DModel, FluxPipeline, BitsAndBytesConfig, GGUFQuantizationConfig
|