Spaces:
Sleeping
Sleeping
File size: 10,855 Bytes
48ae672 a07131b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import gradio as gr
import torch
import numpy as np
import pandas as pd
import copy
import torch.nn.functional as F
from collections import defaultdict
from openprompt import PromptDataLoader, PromptForClassification
from openprompt.data_utils import InputExample
from openprompt.prompts import MixedTemplate, SoftVerbalizer
from transformers import AdamW, get_linear_schedule_with_warmup, XLMRobertaConfig, XLMRobertaTokenizer, XLMRobertaModel, XLMRobertaForMaskedLM, set_seed, AdapterConfig
from openprompt.plms.utils import TokenizerWrapper
import re
def check_only_numbers(string):
return string.isdigit()
def remove_symbols_and_numbers(string):
pattern = r"[-()\"#/@;:<>{}`+=~|_▁.!?,1234567890]"
clean_string = re.sub(pattern, '', string)
return clean_string
def is_sinhala(char):
# https://unicode.org/charts/PDF/U0D80.pdf
return ord(char) >= 0x0D80 and ord(char) <= 0x0DFF
def get_chars(word, without_si_modifiers = True):
mods = [0x0DCA,0x0DCF,0x0DD0,0x0DD1,0x0DD2,0x0DD3,0x0DD4,0x0DD5,0x0DD6,0x0DD7,0x0DD8,0x0DD9,0x0DDA,0x0DDB,0x0DDC,0x0DDD,0x0DDE,0x0DDF,0x0DF2,0x0DF3]
if without_si_modifiers:
return [char for char in list(word) if ord(char) not in mods]
else:
return list(word)
def script_classify(text,en_thresh,si_thresh,without_si_mods):
script = ""
tokens = text.split()
total_chars = 0
latin_char_count = 0
sin_char_count = 0
for t_i,t in enumerate(tokens):
if check_only_numbers(t):
continue
token_list = get_chars(remove_symbols_and_numbers(t),without_si_modifiers = without_si_mods)
token_len = len(token_list)
total_chars += token_len
for ch in token_list:
if is_sinhala(ch):
sin_char_count += 1
else:
latin_char_count += 1
if total_chars == 0:
script = 'Symbol'
else:
en_percentage = latin_char_count/total_chars
si_percentage = sin_char_count/total_chars
if en_percentage >= en_thresh:
script = 'Latin'
elif si_percentage >= si_thresh:
script = 'Sinhala'
elif en_percentage < en_thresh and si_percentage < si_thresh:
script = 'Mixed'
return script
HUMOUR_MODEL_PATH = 'ad-houlsby-humour-seed-42.ckpt'
SENTIMENT_MODEL_PATH = 'ad-drop-houlsby-11-sentiment-seed-42.ckpt'
humour_mapping = {
0: "Non-humourous",
1:"Humourous"
}
sentiment_mapping = {
0: "Negative",
1:"Neutral",
2:"Positive",
3:"Conflict"
}
def load_plm(model_name, model_path):
model_config = XLMRobertaConfig.from_pretrained(model_path)
model = XLMRobertaForMaskedLM.from_pretrained(model_path, config=model_config)
tokenizer = XLMRobertaTokenizer.from_pretrained(model_path)
wrapper = MLMTokenizerWrapper
return model, tokenizer, wrapper
class MLMTokenizerWrapper(TokenizerWrapper):
add_input_keys = ['input_ids', 'attention_mask', 'token_type_ids']
@property
def mask_token(self):
return self.tokenizer.mask_token
@property
def mask_token_ids(self):
return self.tokenizer.mask_token_id
@property
def num_special_tokens_to_add(self):
if not hasattr(self, '_num_specials'):
self._num_specials = self.tokenizer.num_special_tokens_to_add()
return self._num_specials
def tokenize_one_example(self, wrapped_example, teacher_forcing):
wrapped_example, others = wrapped_example
encoded_tgt_text = []
if 'tgt_text' in others:
tgt_text = others['tgt_text']
if isinstance(tgt_text, str):
tgt_text = [tgt_text]
for t in tgt_text:
encoded_tgt_text.append(self.tokenizer.encode(t, add_special_tokens=False))
mask_id = 0 # the i-th the mask token in the template.
encoder_inputs = defaultdict(list)
for piece in wrapped_example:
if piece['loss_ids']==1:
if teacher_forcing: # fill the mask with the tgt task
raise RuntimeError("Masked Language Model can't perform teacher forcing training!")
else:
encode_text = [self.mask_token_ids]
mask_id += 1
if piece['text'] in self.special_tokens_maps.keys():
to_replace = self.special_tokens_maps[piece['text']]
if to_replace is not None:
piece['text'] = to_replace
else:
raise KeyError("This tokenizer doesn't specify {} token.".format(piece['text']))
if 'soft_token_ids' in piece and piece['soft_token_ids']!=0:
encode_text = [0] # can be replace by any token, since these token will use their own embeddings
else:
encode_text = self.tokenizer.encode(piece['text'], add_special_tokens=False)
encoding_length = len(encode_text)
encoder_inputs['input_ids'].append(encode_text)
for key in piece:
if key not in ['text']:
encoder_inputs[key].append([piece[key]]*encoding_length)
encoder_inputs = self.truncate(encoder_inputs=encoder_inputs)
# delete shortenable ids
encoder_inputs.pop("shortenable_ids")
encoder_inputs = self.concate_parts(input_dict=encoder_inputs)
encoder_inputs = self.add_special_tokens(encoder_inputs=encoder_inputs)
# create special input ids
encoder_inputs['attention_mask'] = [1] *len(encoder_inputs['input_ids'])
if self.create_token_type_ids:
encoder_inputs['token_type_ids'] = [0] *len(encoder_inputs['input_ids'])
# padding
encoder_inputs = self.padding(input_dict=encoder_inputs, max_len=self.max_seq_length, pad_id_for_inputs=self.tokenizer.pad_token_id)
if len(encoded_tgt_text) > 0:
encoder_inputs = {**encoder_inputs, "encoded_tgt_text": encoded_tgt_text}# convert defaultdict to dict
else:
encoder_inputs = {**encoder_inputs}
return encoder_inputs
plm, tokenizer, wrapper_class = load_plm("xlm", "xlm-roberta-base")
plm_copy = copy.deepcopy(plm)
tokenizer_copy = copy.deepcopy(tokenizer)
wrapper_class_copy = copy.deepcopy(wrapper_class)
sent_adapter_name = "Task_Sentiment"
sent_adapter_config = AdapterConfig.load("houlsby")
sent_adapter_config.leave_out.extend([11])
plm.add_adapter(sent_adapter_name, config=sent_adapter_config)
plm.set_active_adapters(sent_adapter_name)
plm.train_adapter(sent_adapter_name)
sent_template = '{"placeholder": "text_a"}. {"soft": "The"} {"soft": "sentiment"} {"soft": "or"} {"soft": "the"} {"soft": "feeling"} {"soft": "of"} {"soft": "the"} {"soft": "given"} {"soft": "sentence"} {"soft": "can"} {"soft": "be"} {"soft": "classified"} {"soft": "as"} {"soft": "positive"} {"soft": ","} {"soft": "negative"} {"soft": "or"} {"soft": "neutral"} {"soft": "."} {"soft": "The"} {"soft": "classified"} {"soft": "sentiment"} {"soft": "of"} {"soft": "the"} {"soft": "sentence"} {"soft": "is"} {"mask"}.'
sent_promptTemplate = MixedTemplate(model=plm, text = sent_template, tokenizer = tokenizer)
sent_promptVerbalizer = SoftVerbalizer(tokenizer, plm, num_classes=4)
sent_promptModel = PromptForClassification(template = sent_promptTemplate, plm = plm, verbalizer = sent_promptVerbalizer)
sent_promptModel.load_state_dict(torch.load(SENTIMENT_MODEL_PATH,map_location=torch.device('cpu')))
sent_promptModel.eval()
hum_adapter_name = "Ad_Humour"
hum_adapter_config = AdapterConfig.load("houlsby")
plm_copy.add_adapter(hum_adapter_name, config=hum_adapter_config)
plm_copy.set_active_adapters(hum_adapter_name)
plm_copy.train_adapter(hum_adapter_name)
hum_template = '{"placeholder": "text_a"}. {"soft": "Capture"} {"soft": "the"} {"soft": "comedic"} {"soft": "elements"} {"soft": "of"} {"soft": "the"} {"soft": "given"} {"soft": "sentence"} {"soft": "and"} {"soft": "classify"} {"soft": "as"} {"soft": "Humorous"} {"soft": ","} {"soft": "otherwise"} {"soft": "classify"} {"soft": "as"} {"soft": "Non-humorous"} {"soft": "."} {"soft": "The"} {"soft": "sentence"} {"soft": "is"} {"mask"}.'
hum_promptTemplate = MixedTemplate(model=plm_copy, text = hum_template, tokenizer = tokenizer_copy)
hum_promptVerbalizer = SoftVerbalizer(tokenizer_copy, plm_copy, num_classes=2)
hum_promptModel = PromptForClassification(template = hum_promptTemplate, plm = plm_copy, verbalizer = hum_promptVerbalizer)
hum_promptModel.load_state_dict(torch.load(HUMOUR_MODEL_PATH,map_location=torch.device('cpu')))
hum_promptModel.eval()
def sentiment(text):
pred = None
dataset = [
InputExample(
guid = 0,
text_a = text,
)
]
data_loader = PromptDataLoader(
dataset = dataset,
tokenizer = tokenizer,
template = sent_promptTemplate,
tokenizer_wrapper_class=wrapper_class,
)
for step, inputs in enumerate(data_loader):
logits = sent_promptModel(inputs)
pred = sentiment_mapping[torch.argmax(logits, dim=-1).cpu().tolist()[0]]
return pred
def humour(text):
pred = None
dataset = [
InputExample(
guid = 0,
text_a = text,
)
]
data_loader = PromptDataLoader(
dataset = dataset,
tokenizer = tokenizer_copy,
template = hum_promptTemplate,
tokenizer_wrapper_class=wrapper_class_copy,
)
for step, inputs in enumerate(data_loader):
logits = hum_promptModel(inputs)
pred = humour_mapping[torch.argmax(logits, dim=-1).cpu().tolist()[0]]
return pred
def classifier(text, task):
one_script = script_classify(text,1.0,1.0,True)
pointnine_script = script_classify(text,0.9,0.9,True)
if task == "Sentiment Classification":
return sentiment(text),one_script, pointnine_script
elif task == "Humour Detection":
return humour(text),one_script, pointnine_script
demo = gr.Interface(
title="Use of Prompt-Based Learning For Code-Mixed Text Classification",
fn=classifier,
inputs=[
gr.Textbox(placeholder="Enter an input sentence...",label="Input Sentence"),
gr.Radio(["Sentiment Classification", "Humour Detection"], label="Task")
],
outputs=[
gr.Label(label="Label"),
gr.Textbox(label="Script Threshold 100%"),
gr.Textbox(label="Script Threshold 90%")
],
allow_flagging = "never",
examples=[
["Mama kamathi cricket matches balanna", "Sentiment Classification"],
["මම sweet food වලට කැමති නෑ", "Sentiment Classification"],
["The weather outside is neither too hot nor too cold", "Sentiment Classification"],
["ඉබ්බයි හාවයි හොඳ යාලුවොලු", "Humour Detection"],
["Kandy ගොඩක් lassanai", "Humour Detection"]
])
demo.launch() |