File size: 10,927 Bytes
5021a0c 63f1d6d 4337b98 5021a0c 4bccf88 e42e13d a4e47b1 fba3345 0596274 44c7b6f eae282d 284179e eae282d 27bebc1 fba3345 ba3a67a 27bebc1 ba3a67a fba3345 b30d49e fba3345 ba3a67a fba3345 ba3a67a b184cb6 fba3345 b184cb6 fba3345 b184cb6 fba3345 b184cb6 fba3345 b184cb6 fba3345 b184cb6 fba3345 b184cb6 fba3345 b184cb6 fba3345 5021a0c 555abcf fba3345 555abcf fba3345 555abcf fba3345 555abcf 552e1db 4bccf88 552e1db 5021a0c 552e1db 4bccf88 5021a0c fba3345 4bccf88 fba3345 4bccf88 770aeac 5021a0c 552e1db fba3345 ba3a67a 5021a0c 92f530c 5021a0c 552e1db 5021a0c fba3345 5021a0c fba3345 5021a0c 552e1db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import spaces
import gradio as gr
import edge_tts
import asyncio
import tempfile
import os
import re
from pathlib import Path
from pydub import AudioSegment
import librosa
import numpy as np
def get_silence(duration_ms=1000):
# Create silent audio segment with specified parameters
silent_audio = AudioSegment.silent(
duration=duration_ms,
frame_rate=24000 # 24kHz sampling rate
)
# Set audio parameters
silent_audio = silent_audio.set_channels(1) # Mono
silent_audio = silent_audio.set_sample_width(4) # 32-bit (4 bytes per sample)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
# Export with specific bitrate and codec parameters
silent_audio.export(
tmp_file.name,
format="mp3",
bitrate="48k",
parameters=[
"-ac", "1", # Mono
"-ar", "24000", # Sample rate
"-sample_fmt", "s32", # 32-bit samples
"-codec:a", "libmp3lame" # MP3 codec
]
)
return tmp_file.name
# Get all available voices
async def get_voices():
voices = await edge_tts.list_voices()
return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices}
async def generate_audio_with_voice_prefix(text_segment, default_voice, rate, pitch, target_duration_ms=None):
"""Generates audio for a text segment, handling voice prefixes and adjusting rate for duration."""
current_voice_full = default_voice
current_voice_short = current_voice_full.split(" - ")[0] if current_voice_full else ""
current_rate = rate
current_pitch = pitch
processed_text = text_segment.strip()
voice_map = {
"1F": "en-GB-SoniaNeural",
"2M": "en-GB-RyanNeural",
"3M": "en-US-BrianMultilingualNeural",
"2F": "en-US-JennyNeural",
"1M": "en-AU-WilliamNeural",
"3F": "en-HK-YanNeural",
"4M": "en-GB-ThomasNeural",
"4F": "en-US-EmmaNeural",
"1O": "en-GB-RyanNeural", # Old Man
"1C": "en-GB-MaisieNeural", # Child
"1V": "vi-VN-HoaiMyNeural", # Vietnamese (Female)
"2V": "vi-VN-NamMinhNeural", # Vietnamese (Male)
"3V": "vi-VN-HoaiMyNeural", # Vietnamese (Female)
"4V": "vi-VN-NamMinhNeural", # Vietnamese (Male)
}
detect = 0
for prefix, voice_short in voice_map.items():
if processed_text.startswith(prefix):
current_voice_short = voice_short
if prefix in ["1F", "3F", "1V", "3V"]:
current_pitch = 25
elif prefix in ["1O", "4V"]:
current_pitch = -20
current_rate = -10
detect = 1
processed_text = processed_text[len(prefix):].strip()
break
match = re.search(r'([A-Za-z]+)-?(\d+)', processed_text)
if match:
prefix_pitch = match.group(1)
number = int(match.group(2))
if prefix_pitch in voice_map:
current_pitch += number
processed_text = re.sub(r'[A-Za-z]+-?\d+', '', processed_text, count=1).strip()
elif detect:
processed_text = processed_text.lstrip('-0123456789').strip() # Remove potential leftover numbers
elif detect:
processed_text = processed_text[2:].strip()
if processed_text:
rate_str = f"{current_rate:+d}%"
pitch_str = f"{current_pitch:+d}Hz"
communicate = edge_tts.Communicate(processed_text, current_voice_short, rate=rate_str, pitch=pitch_str)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
audio_path = tmp_file.name
await communicate.save(audio_path)
if target_duration_ms is not None and os.path.exists(audio_path):
audio = AudioSegment.from_mp3(audio_path)
audio_duration_ms = len(audio)
if audio_duration_ms > 0 and target_duration_ms > 0:
speed_factor = audio_duration_ms / target_duration_ms
if speed_factor > 0:
# Use librosa for time stretching with better quality for speech
y, sr = librosa.load(audio_path, sr=None)
y_stretched = librosa.effects.time_stretch(y, rate=speed_factor)
sf.write(audio_path, y_stretched, sr)
return audio_path
return None
async def process_transcript_line(line, default_voice, rate, pitch):
"""Processes a single transcript line with HH:MM:SS,milliseconds - HH:MM:SS,milliseconds timestamp."""
match = re.match(r'(\d{2}):(\d{2}):(\d{2}),(\d{3})\s+-\s+(\d{2}):(\d{2}):(\d{2}),(\d{3})\s+(.*)', line)
if match:
start_h, start_m, start_s, start_ms, end_h, end_m, end_s, end_ms, text_parts = match.groups()
start_time_ms = (
int(start_h) * 3600000 +
int(start_m) * 60000 +
int(start_s) * 1000 +
int(start_ms)
)
end_time_ms = (
int(end_h) * 3600000 +
int(end_m) * 60000 +
int(end_s) * 1000 +
int(end_ms)
)
duration_ms = end_time_ms - start_time_ms
audio_segments = []
split_parts = re.split(r'[“”"]', text_parts)
process_next = False
for part in split_parts:
if part == '"':
process_next = not process_next
continue
if process_next and part.strip():
audio_path = await generate_audio_with_voice_prefix(part, default_voice, rate, pitch, duration_ms)
if audio_path:
audio_segments.append(audio_path)
elif not process_next and part.strip():
audio_path = await generate_audio_with_voice_prefix(part, default_voice, rate, pitch, duration_ms)
if audio_path:
audio_segments.append(audio_path)
return start_time_ms, audio_segments, duration_ms
return None, None, None
async def transcript_to_speech(transcript_text, voice, rate, pitch):
if not transcript_text.strip():
return None, gr.Warning("Please enter transcript text.")
if not voice:
return None, gr.Warning("Please select a voice.")
lines = transcript_text.strip().split('\n')
timed_audio_segments = []
max_end_time_ms = 0
for line in lines:
start_time, audio_paths, duration = await process_transcript_line(line, voice, rate, pitch)
if start_time is not None and audio_paths:
combined_line_audio = AudioSegment.empty()
current_time_ms = start_time
segment_duration = duration / len(audio_paths) if audio_paths else 0
for path in audio_paths:
try:
audio = AudioSegment.from_mp3(path)
# No need to adjust speed here, it's done in generate_audio_with_voice_prefix
combined_line_audio += audio
os.remove(path)
except FileNotFoundError:
print(f"Warning: Audio file not found: {path}")
if combined_line_audio:
timed_audio_segments.append({'start': start_time, 'audio': combined_line_audio})
max_end_time_ms = max(max_end_time_ms, start_time + len(combined_line_audio))
elif audio_paths:
for path in audio_paths:
try:
os.remove(path)
except FileNotFoundError:
pass # Clean up even if no timestamp
if not timed_audio_segments:
return None, "No processable audio segments found."
final_audio = AudioSegment.silent(duration=max_end_time_ms, frame_rate=24000)
for segment in timed_audio_segments:
final_audio = final_audio.overlay(segment['audio'], position=segment['start'])
combined_audio_path = tempfile.mktemp(suffix=".mp3")
final_audio.export(combined_audio_path, format="mp3")
return combined_audio_path, None
@spaces.GPU
def tts_interface(transcript, voice, rate, pitch):
audio, warning = asyncio.run(transcript_to_speech(transcript, voice, rate, pitch))
return audio, warning
async def create_demo():
voices = await get_voices()
default_voice = "en-US-AndrewMultilingualNeural - en-US (Male)"
description = """
Process timestamped text (HH:MM:SS,milliseconds - HH:MM:SS,milliseconds) with voice changes within quotes.
The duration specified in the timestamp will be used to adjust the speech rate so the generated audio fits within that time.
Format: `HH:MM:SS,milliseconds - HH:MM:SS,milliseconds "VoicePrefix Text" more text "AnotherVoicePrefix More Text"`
Example:
```
00:00:00,000 - 00:00:05,000 "This is the default voice." more default. "1F Now a female voice." and back to default.
00:00:05,500 - 00:00:10,250 "1C Yes," said the child, "it is fun!"
```
***************************************************************************************************
1M = en-AU-WilliamNeural - en-AU (Male)
1F = en-GB-SoniaNeural - en-GB (Female)
2M = en-GB-RyanNeural - en-GB (Male)
2F = en-US-JennyNeural - en-US (Female)
3M = en-US-BrianMultilingualNeural - en-US (Male)
3F = en-HK-YanNeural - en-HK (Female)
4M = en-GB-ThomasNeural - en-GB (Male)
4F = en-US-EmmaNeural - en-US (Female)
1O = en-GB-RyanNeural - en-GB (Male) # Old Man
1C = en-GB-MaisieNeural - en-GB (Female) # Child
1V = vi-VN-HoaiMyNeural - vi-VN (Female) # Vietnamese (Female)
2V = vi-VN-NamMinhNeural - vi-VN (Male) # Vietnamese (Male)
3V = vi-VN-HoaiMyNeural - vi-VN (Female) # Vietnamese (Female)
4V = vi-VN-NamMinhNeural - vi-VN (Male) # Vietnamese (Male)
****************************************************************************************************
"""
demo = gr.Interface(
fn=tts_interface,
inputs=[
gr.Textbox(label="Timestamped Text with Voice Changes and Duration", lines=10, placeholder='00:00:00,000 - 00:00:05,000 "Text" more text "1F Different Voice"'),
gr.Dropdown(choices=[""] + list(voices.keys()), label="Select Default Voice", value=default_voice),
gr.Slider(minimum=-50, maximum=50, value=0, label="Speech Rate Adjustment (%)", step=1),
gr.Slider(minimum=-50, maximum=50, value=0, label="Pitch Adjustment (Hz)", step=1)
],
outputs=[
gr.Audio(label="Generated Audio", type="filepath"),
gr.Markdown(label="Warning", visible=False)
],
title="TTS with Duration-Aware Speed Adjustment and In-Quote Voice Switching",
description=description,
analytics_enabled=False,
allow_flagging=False
)
return demo
if __name__ == "__main__":
import soundfile as sf # Import soundfile here
demo = asyncio.run(create_demo())
demo.launch() |