File size: 10,927 Bytes
5021a0c
 
 
63f1d6d
4337b98
5021a0c
4bccf88
e42e13d
a4e47b1
fba3345
 
0596274
44c7b6f
eae282d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
284179e
 
 
eae282d
 
27bebc1
fba3345
 
ba3a67a
27bebc1
 
 
ba3a67a
fba3345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b30d49e
fba3345
 
 
 
 
 
 
 
 
 
 
ba3a67a
 
 
 
 
 
 
fba3345
 
 
 
 
 
 
 
 
 
 
ba3a67a
 
 
b184cb6
fba3345
 
b184cb6
fba3345
b184cb6
fba3345
 
 
 
b184cb6
fba3345
 
 
 
 
 
 
b184cb6
fba3345
b184cb6
 
 
 
 
 
fba3345
b184cb6
 
 
fba3345
b184cb6
 
 
fba3345
 
5021a0c
555abcf
 
 
 
 
 
 
 
 
 
 
fba3345
555abcf
 
fba3345
 
 
555abcf
 
 
fba3345
555abcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
552e1db
4bccf88
 
552e1db
 
5021a0c
552e1db
4bccf88
5021a0c
fba3345
 
 
4bccf88
 
fba3345
 
4bccf88
770aeac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5021a0c
 
552e1db
 
fba3345
ba3a67a
5021a0c
92f530c
5021a0c
552e1db
5021a0c
 
 
fba3345
5021a0c
 
 
 
 
 
 
fba3345
5021a0c
552e1db
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import spaces
import gradio as gr
import edge_tts
import asyncio
import tempfile
import os
import re
from pathlib import Path
from pydub import AudioSegment
import librosa
import numpy as np

def get_silence(duration_ms=1000):
    # Create silent audio segment with specified parameters
    silent_audio = AudioSegment.silent(
        duration=duration_ms,
        frame_rate=24000  # 24kHz sampling rate
    )

    # Set audio parameters
    silent_audio = silent_audio.set_channels(1)  # Mono
    silent_audio = silent_audio.set_sample_width(4)  # 32-bit (4 bytes per sample)

    with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
        # Export with specific bitrate and codec parameters
        silent_audio.export(
            tmp_file.name,
            format="mp3",
            bitrate="48k",
            parameters=[
                "-ac", "1",  # Mono
                "-ar", "24000",  # Sample rate
                "-sample_fmt", "s32",  # 32-bit samples
                "-codec:a", "libmp3lame"  # MP3 codec
            ]
        )
        return tmp_file.name

# Get all available voices
async def get_voices():
    voices = await edge_tts.list_voices()
    return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices}

async def generate_audio_with_voice_prefix(text_segment, default_voice, rate, pitch, target_duration_ms=None):
    """Generates audio for a text segment, handling voice prefixes and adjusting rate for duration."""
    current_voice_full = default_voice
    current_voice_short = current_voice_full.split(" - ")[0] if current_voice_full else ""
    current_rate = rate
    current_pitch = pitch
    processed_text = text_segment.strip()
    voice_map = {
        "1F": "en-GB-SoniaNeural",
        "2M": "en-GB-RyanNeural",
        "3M": "en-US-BrianMultilingualNeural",
        "2F": "en-US-JennyNeural",
        "1M": "en-AU-WilliamNeural",
        "3F": "en-HK-YanNeural",
        "4M": "en-GB-ThomasNeural",
        "4F": "en-US-EmmaNeural",
        "1O": "en-GB-RyanNeural",  # Old Man
        "1C": "en-GB-MaisieNeural",  # Child
        "1V": "vi-VN-HoaiMyNeural",  # Vietnamese (Female)
        "2V": "vi-VN-NamMinhNeural",  # Vietnamese (Male)
        "3V": "vi-VN-HoaiMyNeural",  # Vietnamese (Female)
        "4V": "vi-VN-NamMinhNeural",  # Vietnamese (Male)
    }
    detect = 0
    for prefix, voice_short in voice_map.items():
        if processed_text.startswith(prefix):
            current_voice_short = voice_short
            if prefix in ["1F", "3F", "1V", "3V"]:
                current_pitch = 25
            elif prefix in ["1O", "4V"]:
                current_pitch = -20
                current_rate = -10
            detect = 1
            processed_text = processed_text[len(prefix):].strip()
            break

    match = re.search(r'([A-Za-z]+)-?(\d+)', processed_text)
    if match:
        prefix_pitch = match.group(1)
        number = int(match.group(2))
        if prefix_pitch in voice_map:
            current_pitch += number
            processed_text = re.sub(r'[A-Za-z]+-?\d+', '', processed_text, count=1).strip()
        elif detect:
            processed_text = processed_text.lstrip('-0123456789').strip() # Remove potential leftover numbers

    elif detect:
        processed_text = processed_text[2:].strip()

    if processed_text:
        rate_str = f"{current_rate:+d}%"
        pitch_str = f"{current_pitch:+d}Hz"
        communicate = edge_tts.Communicate(processed_text, current_voice_short, rate=rate_str, pitch=pitch_str)
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
            audio_path = tmp_file.name
            await communicate.save(audio_path)

        if target_duration_ms is not None and os.path.exists(audio_path):
            audio = AudioSegment.from_mp3(audio_path)
            audio_duration_ms = len(audio)
            if audio_duration_ms > 0 and target_duration_ms > 0:
                speed_factor = audio_duration_ms / target_duration_ms
                if speed_factor > 0:
                    # Use librosa for time stretching with better quality for speech
                    y, sr = librosa.load(audio_path, sr=None)
                    y_stretched = librosa.effects.time_stretch(y, rate=speed_factor)
                    sf.write(audio_path, y_stretched, sr)
        return audio_path
    return None

async def process_transcript_line(line, default_voice, rate, pitch):
    """Processes a single transcript line with HH:MM:SS,milliseconds - HH:MM:SS,milliseconds timestamp."""
    match = re.match(r'(\d{2}):(\d{2}):(\d{2}),(\d{3})\s+-\s+(\d{2}):(\d{2}):(\d{2}),(\d{3})\s+(.*)', line)
    if match:
        start_h, start_m, start_s, start_ms, end_h, end_m, end_s, end_ms, text_parts = match.groups()
        start_time_ms = (
            int(start_h) * 3600000 +
            int(start_m) * 60000 +
            int(start_s) * 1000 +
            int(start_ms)
        )
        end_time_ms = (
            int(end_h) * 3600000 +
            int(end_m) * 60000 +
            int(end_s) * 1000 +
            int(end_ms)
        )
        duration_ms = end_time_ms - start_time_ms
        audio_segments = []
        split_parts = re.split(r'[“”"]', text_parts)
        process_next = False
        for part in split_parts:
            if part == '"':
                process_next = not process_next
                continue
            if process_next and part.strip():
                audio_path = await generate_audio_with_voice_prefix(part, default_voice, rate, pitch, duration_ms)
                if audio_path:
                    audio_segments.append(audio_path)
            elif not process_next and part.strip():
                audio_path = await generate_audio_with_voice_prefix(part, default_voice, rate, pitch, duration_ms)
                if audio_path:
                    audio_segments.append(audio_path)

        return start_time_ms, audio_segments, duration_ms
    return None, None, None

async def transcript_to_speech(transcript_text, voice, rate, pitch):
    if not transcript_text.strip():
        return None, gr.Warning("Please enter transcript text.")
    if not voice:
        return None, gr.Warning("Please select a voice.")

    lines = transcript_text.strip().split('\n')
    timed_audio_segments = []
    max_end_time_ms = 0

    for line in lines:
        start_time, audio_paths, duration = await process_transcript_line(line, voice, rate, pitch)
        if start_time is not None and audio_paths:
            combined_line_audio = AudioSegment.empty()
            current_time_ms = start_time
            segment_duration = duration / len(audio_paths) if audio_paths else 0

            for path in audio_paths:
                try:
                    audio = AudioSegment.from_mp3(path)
                    # No need to adjust speed here, it's done in generate_audio_with_voice_prefix
                    combined_line_audio += audio
                    os.remove(path)
                except FileNotFoundError:
                    print(f"Warning: Audio file not found: {path}")

            if combined_line_audio:
                timed_audio_segments.append({'start': start_time, 'audio': combined_line_audio})
                max_end_time_ms = max(max_end_time_ms, start_time + len(combined_line_audio))
        elif audio_paths:
            for path in audio_paths:
                try:
                    os.remove(path)
                except FileNotFoundError:
                    pass # Clean up even if no timestamp

    if not timed_audio_segments:
        return None, "No processable audio segments found."

    final_audio = AudioSegment.silent(duration=max_end_time_ms, frame_rate=24000)
    for segment in timed_audio_segments:
        final_audio = final_audio.overlay(segment['audio'], position=segment['start'])

    combined_audio_path = tempfile.mktemp(suffix=".mp3")
    final_audio.export(combined_audio_path, format="mp3")
    return combined_audio_path, None

@spaces.GPU
def tts_interface(transcript, voice, rate, pitch):
    audio, warning = asyncio.run(transcript_to_speech(transcript, voice, rate, pitch))
    return audio, warning

async def create_demo():
    voices = await get_voices()
    default_voice = "en-US-AndrewMultilingualNeural - en-US (Male)"
    description = """
    Process timestamped text (HH:MM:SS,milliseconds - HH:MM:SS,milliseconds) with voice changes within quotes.
    The duration specified in the timestamp will be used to adjust the speech rate so the generated audio fits within that time.
    Format: `HH:MM:SS,milliseconds - HH:MM:SS,milliseconds "VoicePrefix Text" more text "AnotherVoicePrefix More Text"`
    Example:
    ```
    00:00:00,000 - 00:00:05,000 "This is the default voice." more default. "1F Now a female voice." and back to default.
    00:00:05,500 - 00:00:10,250 "1C Yes," said the child, "it is fun!"
    ```
    ***************************************************************************************************
    1M = en-AU-WilliamNeural - en-AU (Male)
    1F = en-GB-SoniaNeural - en-GB (Female)
    2M = en-GB-RyanNeural - en-GB (Male)
    2F = en-US-JennyNeural - en-US (Female)
    3M = en-US-BrianMultilingualNeural - en-US (Male)
    3F = en-HK-YanNeural - en-HK (Female)
    4M = en-GB-ThomasNeural - en-GB (Male)
    4F = en-US-EmmaNeural - en-US (Female)
    1O = en-GB-RyanNeural - en-GB (Male) # Old Man
    1C = en-GB-MaisieNeural - en-GB (Female) # Child
    1V = vi-VN-HoaiMyNeural - vi-VN (Female) # Vietnamese (Female)
    2V = vi-VN-NamMinhNeural - vi-VN (Male) # Vietnamese (Male)
    3V = vi-VN-HoaiMyNeural - vi-VN (Female) # Vietnamese (Female)
    4V = vi-VN-NamMinhNeural - vi-VN (Male) # Vietnamese (Male)
    ****************************************************************************************************
    """
    demo = gr.Interface(
        fn=tts_interface,
        inputs=[
            gr.Textbox(label="Timestamped Text with Voice Changes and Duration", lines=10, placeholder='00:00:00,000 - 00:00:05,000 "Text" more text "1F Different Voice"'),
            gr.Dropdown(choices=[""] + list(voices.keys()), label="Select Default Voice", value=default_voice),
            gr.Slider(minimum=-50, maximum=50, value=0, label="Speech Rate Adjustment (%)", step=1),
            gr.Slider(minimum=-50, maximum=50, value=0, label="Pitch Adjustment (Hz)", step=1)
        ],
        outputs=[
            gr.Audio(label="Generated Audio", type="filepath"),
            gr.Markdown(label="Warning", visible=False)
        ],
        title="TTS with Duration-Aware Speed Adjustment and In-Quote Voice Switching",
        description=description,
        analytics_enabled=False,
        allow_flagging=False
    )
    return demo

if __name__ == "__main__":
    import soundfile as sf # Import soundfile here
    demo = asyncio.run(create_demo())
    demo.launch()