cnph001's picture
Revert to previous code
ff3ad52 verified
raw
history blame
8.99 kB
import soundfile as sf
import numpy as np
def get_silence(duration_ms=1000):
# Create silent audio segment with specified parameters
silent_audio = AudioSegment.silent(
duration=duration_ms,
frame_rate=24000 # 24kHz sampling rate
)
# Set audio parameters
silent_audio = silent_audio.set_channels(1) # Mono
silent_audio = silent_audio.set_sample_width(4) # 32-bit (4 bytes per sample)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
# Export with specific bitrate and codec parameters
silent_audio.export(
tmp_file.name,
format="mp3",
bitrate="48k",
parameters=[
"-ac", "1", # Mono
"-ar", "24000", # Sample rate
"-sample_fmt", "s32", # 32-bit samples
"-codec:a", "libmp3lame" # MP3 codec
]
)
return tmp_file.name
# Get all available voices
async def get_voices():
try:
voices = await edge_tts.list_voices()
return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices}
async def generate_audio_with_voice_prefix(text_segment, default_voice, rate, pitch, target_duration_ms=None, speed_adjustment_factor=1.0):
"""Generates audio for a text segment, handling voice prefixes and adjusting rate for duration."""
current_voice_full = default_voice
current_voice_short = current_voice_full.split(" - ")[0] if current_voice_full else ""
current_rate = rate
current_pitch = pitch
processed_text = text_segment.strip()
print(f"Processing this text segment: {processed_text}") # Debug
voice_map = {
"1F": "en-GB-SoniaNeural",
"2M": "en-GB-RyanNeural",
"3M": "en-US-BrianMultilingualNeural",
"2F": "en-US-JennyNeural",
"1M": "en-AU-WilliamNeural",
"3F": "en-HK-YanNeural",
"4M": "en-GB-ThomasNeural",
"4F": "en-US-EmmaNeural",
"1O": "en-GB-RyanNeural", # Old Man
"1C": "en-GB-MaisieNeural", # Child
"1V": "vi-VN-HoaiMyNeural", # Vietnamese (Female)
"2V": "vi-VN-NamMinhNeural", # Vietnamese (Male)
"3V": "vi-VN-HoaiMyNeural", # Vietnamese (Female)
"4V": "vi-VN-NamMinhNeural", # Vietnamese (Male)
}
detect = 0
for prefix, voice_short in voice_map.items():
if processed_text.startswith(prefix):
current_voice_short = voice_short
if prefix in ["1F", "3F", "1V", "3V"]:
elif prefix in ["1O", "4V"]:
current_pitch = -20
current_rate = -10
detect = 1
processed_text = processed_text[len(prefix):].strip()
break
match = re.search(r'([A-Za-z]+)-?(\d+)', processed_text)
if match:
prefix_pitch = match.group(1)
number = int(match.group(2))
if prefix_pitch in voice_map:
current_pitch += number
processed_text = re.sub(r'[A-Za-z]+-?\d+', '', processed_text, count=1).strip()
elif detect:
processed_text = processed_text.lstrip('-0123456789').strip() # Remove potential leftover numbers
elif detect:
processed_text = processed_text[2:].strip()
if processed_text:
rate_str = f"{current_rate:+d}%"
pitch_str = f"{current_pitch:+d}Hz"
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
audio_path = tmp_file.name
await communicate.save(audio_path)
if target_duration_ms is not None and os.path.exists(audio_path):
audio = AudioSegment.from_mp3(audio_path)
audio_duration_ms = len(audio)
#print(f"Generated audio duration: {audio_duration_ms}ms, Target duration: {target_duration_ms}ms") # Debug
if audio_duration_ms > target_duration_ms and target_duration_ms > 0:
speed_factor = (audio_duration_ms / target_duration_ms) * speed_adjustment_factor
#print(f"Speed factor (after user adjustment): {speed_factor}") # Debug
if speed_factor > 0:
if speed_factor < 1.0:
speed_factor = 1.0
y, sr = librosa.load(audio_path, sr=None)
y_stretched = librosa.effects.time_stretch(y, rate=speed_factor)
sf.write(audio_path, y_stretched, sr)
else:
print("Generated audio is not longer than target duration, no speed adjustment.") # Debug
return audio_path
except Exception as e:
print(f"Edge TTS error processing '{processed_text}': {e}")
return None
return None
async def process_transcript_line(line, default_voice, rate, pitch, speed_adjustment_factor):
"""Processes a single transcript line with HH:MM:SS,milliseconds - HH:MM:SS,milliseconds timestamp."""
match = re.match(r'(\d{2}):(\d{2}):(\d{2}),(\d{3})\s+-\s+(\d{2}):(\d{2}):(\d{2}),(\d{3})\s+(.*)', line)
if match:
start_h, start_m, start_s, start_ms, end_h, end_m, end_s, end_ms, text_parts = match.groups()
start_time_ms = (
int(start_h) * 3600000 +
int(start_m) * 60000 +
int(start_s) * 1000 +
int(start_ms)
)
end_time_ms = (
int(end_h) * 3600000 +
int(end_m) * 60000 +
int(end_s) * 1000 +
int(end_ms)
)
duration_ms = end_time_ms - start_time_ms
audio_segments = []
split_parts = re.split(r'[“”"]', text_parts)
process_next = False
for part in split_parts:
if part == '"':
process_next = not process_next
continue
if process_next and part.strip():
audio_path = await generate_audio_with_voice_prefix(part, default_voice, rate, pitch, duration_ms, speed_adjustment_factor)
if audio_path:
audio_segments.append(audio_path)
elif not process_next and part.strip():
audio_path = await generate_audio_with_voice_prefix(part, default_voice, rate, pitch, duration_ms, speed_adjustment_factor)
if audio_path:
audio_segments.append(audio_path)
return start_time_ms, audio_segments, duration_ms
return None, None, None
async def transcript_to_speech(transcript_text, voice, rate, pitch, speed_adjustment_factor):
if not transcript_text.strip():
return None, gr.Warning("Please enter transcript text.")
if not voice:
return None, gr.Warning("Please select a voice.")
lines = transcript_text.strip().split('\n')
timed_audio_segments = []
max_end_time_ms = 0
for line in lines:
start_time, audio_paths, duration = await process_transcript_line(line, voice, rate, pitch, speed_adjustment_factor)
if start_time is not None and audio_paths:
combined_line_audio = AudioSegment.empty()
current_time_ms = start_time
segment_duration = duration / len(audio_paths) if audio_paths else 0
for path in audio_paths:
if path: # Only process if audio_path is not None (meaning TTS was successful)
try:
audio = AudioSegment.from_mp3(path)
combined_line_audio += audio
os.remove(path)
except FileNotFoundError:
print(f"Warning: Audio file not found: {path}")
if combined_line_audio:
timed_audio_segments.append({'start': start_time, 'audio': combined_line_audio})
max_end_time_ms = max(max_end_time_ms, start_time + len(combined_line_audio))
elif audio_paths:
for path in audio_paths:
if path:
try:
os.remove(path)
except FileNotFoundError:
pass # Clean up even if no timestamp
if not timed_audio_segments:
return None, "No processable audio segments found."
final_audio = AudioSegment.silent(duration=max_end_time_ms, frame_rate=24000)
for segment in timed_audio_segments:
final_audio = final_audio.overlay(segment['audio'], position=segment['start'])
combined_audio_path = tempfile.mktemp(suffix=".mp3")
final_audio.export(combined_audio_path, format="mp3")
return combined_audio_path, None
@spaces.GPU
def tts_interface(transcript, voice, rate, pitch, speed_adjustment_factor):
audio, warning = asyncio.run(transcript_to_speech(transcript, voice, rate, pitch, speed_adjustment_factor))
return audio, warning
async def create_demo():
voices = await get_voices()
default_voice = "en-US-AndrewMultilingualNeural - en-US (Male)"
description = """