Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,12 @@
|
|
1 |
-
import
|
2 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
def get_silence(duration_ms=1000):
|
5 |
# Create silent audio segment with specified parameters
|
@@ -7,9 +14,11 @@ def get_silence(duration_ms=1000):
|
|
7 |
duration=duration_ms,
|
8 |
frame_rate=24000 # 24kHz sampling rate
|
9 |
)
|
|
|
10 |
# Set audio parameters
|
11 |
silent_audio = silent_audio.set_channels(1) # Mono
|
12 |
silent_audio = silent_audio.set_sample_width(4) # 32-bit (4 bytes per sample)
|
|
|
13 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
|
14 |
# Export with specific bitrate and codec parameters
|
15 |
silent_audio.export(
|
@@ -27,124 +36,163 @@ def get_silence(duration_ms=1000):
|
|
27 |
|
28 |
# Get all available voices
|
29 |
async def get_voices():
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices}
|
34 |
-
|
35 |
-
async def generate_audio_with_voice_prefix(text_segment, default_voice, rate, pitch, target_duration_ms=None, speed_adjustment_factor=1.0):
|
36 |
-
"""Generates audio for a text segment, handling voice prefixes and adjusting rate for duration."""
|
37 |
current_voice_full = default_voice
|
38 |
current_voice_short = current_voice_full.split(" - ")[0] if current_voice_full else ""
|
39 |
current_rate = rate
|
40 |
current_pitch = pitch
|
41 |
processed_text = text_segment.strip()
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
if match:
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
82 |
if processed_text:
|
83 |
rate_str = f"{current_rate:+d}%"
|
84 |
pitch_str = f"{current_pitch:+d}Hz"
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
audio_duration_ms = len(audio)
|
91 |
-
#print(f"Generated audio duration: {audio_duration_ms}ms, Target duration: {target_duration_ms}ms") # Debug
|
92 |
-
if audio_duration_ms > target_duration_ms and target_duration_ms > 0:
|
93 |
-
speed_factor = (audio_duration_ms / target_duration_ms) * speed_adjustment_factor
|
94 |
-
#print(f"Speed factor (after user adjustment): {speed_factor}") # Debug
|
95 |
-
if speed_factor > 0:
|
96 |
-
if speed_factor < 1.0:
|
97 |
-
speed_factor = 1.0
|
98 |
-
y, sr = librosa.load(audio_path, sr=None)
|
99 |
-
y_stretched = librosa.effects.time_stretch(y, rate=speed_factor)
|
100 |
-
sf.write(audio_path, y_stretched, sr)
|
101 |
-
else:
|
102 |
-
print("Generated audio is not longer than target duration, no speed adjustment.") # Debug
|
103 |
-
return audio_path
|
104 |
-
except Exception as e:
|
105 |
-
print(f"Edge TTS error processing '{processed_text}': {e}")
|
106 |
-
return None
|
107 |
return None
|
108 |
|
109 |
-
async def process_transcript_line(line, default_voice, rate, pitch
|
110 |
-
"""Processes a single transcript line with HH:MM:SS
|
111 |
-
match = re.match(r'(\d{2}):(\d{2}):(\d{2})
|
112 |
if match:
|
113 |
-
|
114 |
start_time_ms = (
|
115 |
-
int(
|
116 |
-
int(
|
117 |
-
int(
|
118 |
-
int(
|
119 |
-
)
|
120 |
-
end_time_ms = (
|
121 |
-
int(end_h) * 3600000 +
|
122 |
-
int(end_m) * 60000 +
|
123 |
-
int(end_s) * 1000 +
|
124 |
-
int(end_ms)
|
125 |
)
|
126 |
-
duration_ms = end_time_ms - start_time_ms
|
127 |
-
|
128 |
audio_segments = []
|
129 |
-
split_parts = re.split(r'
|
|
|
130 |
process_next = False
|
131 |
for part in split_parts:
|
132 |
if part == '"':
|
133 |
process_next = not process_next
|
134 |
continue
|
135 |
if process_next and part.strip():
|
136 |
-
audio_path = await generate_audio_with_voice_prefix(part, default_voice, rate, pitch
|
137 |
if audio_path:
|
138 |
audio_segments.append(audio_path)
|
139 |
elif not process_next and part.strip():
|
140 |
-
audio_path = await generate_audio_with_voice_prefix(part, default_voice, rate, pitch
|
141 |
if audio_path:
|
142 |
audio_segments.append(audio_path)
|
143 |
-
return start_time_ms, audio_segments, duration_ms
|
144 |
-
return None, None, None
|
145 |
|
146 |
-
|
|
|
147 |
|
|
|
148 |
if not transcript_text.strip():
|
149 |
return None, gr.Warning("Please enter transcript text.")
|
150 |
if not voice:
|
@@ -153,47 +201,92 @@ async def transcript_to_speech(transcript_text, voice, rate, pitch, speed_adjust
|
|
153 |
lines = transcript_text.strip().split('\n')
|
154 |
timed_audio_segments = []
|
155 |
max_end_time_ms = 0
|
|
|
156 |
for line in lines:
|
157 |
-
start_time, audio_paths
|
158 |
if start_time is not None and audio_paths:
|
159 |
combined_line_audio = AudioSegment.empty()
|
160 |
-
current_time_ms = start_time
|
161 |
-
segment_duration = duration / len(audio_paths) if audio_paths else 0
|
162 |
for path in audio_paths:
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
if combined_line_audio:
|
171 |
timed_audio_segments.append({'start': start_time, 'audio': combined_line_audio})
|
172 |
max_end_time_ms = max(max_end_time_ms, start_time + len(combined_line_audio))
|
173 |
elif audio_paths:
|
174 |
for path in audio_paths:
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
if not timed_audio_segments:
|
181 |
return None, "No processable audio segments found."
|
|
|
182 |
final_audio = AudioSegment.silent(duration=max_end_time_ms, frame_rate=24000)
|
183 |
for segment in timed_audio_segments:
|
184 |
final_audio = final_audio.overlay(segment['audio'], position=segment['start'])
|
|
|
185 |
combined_audio_path = tempfile.mktemp(suffix=".mp3")
|
186 |
final_audio.export(combined_audio_path, format="mp3")
|
187 |
return combined_audio_path, None
|
188 |
|
189 |
@spaces.GPU
|
190 |
-
def tts_interface(transcript, voice, rate, pitch
|
191 |
-
|
192 |
-
audio, warning = asyncio.run(transcript_to_speech(transcript, voice, rate, pitch, speed_adjustment_factor))
|
193 |
return audio, warning
|
194 |
|
195 |
async def create_demo():
|
196 |
-
|
197 |
voices = await get_voices()
|
198 |
default_voice = "en-US-AndrewMultilingualNeural - en-US (Male)"
|
199 |
-
description = """
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
import edge_tts
|
4 |
+
import asyncio
|
5 |
+
import tempfile
|
6 |
+
import os
|
7 |
+
import re
|
8 |
+
from pathlib import Path
|
9 |
+
from pydub import AudioSegment
|
10 |
|
11 |
def get_silence(duration_ms=1000):
|
12 |
# Create silent audio segment with specified parameters
|
|
|
14 |
duration=duration_ms,
|
15 |
frame_rate=24000 # 24kHz sampling rate
|
16 |
)
|
17 |
+
|
18 |
# Set audio parameters
|
19 |
silent_audio = silent_audio.set_channels(1) # Mono
|
20 |
silent_audio = silent_audio.set_sample_width(4) # 32-bit (4 bytes per sample)
|
21 |
+
|
22 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
|
23 |
# Export with specific bitrate and codec parameters
|
24 |
silent_audio.export(
|
|
|
36 |
|
37 |
# Get all available voices
|
38 |
async def get_voices():
|
39 |
+
voices = await edge_tts.list_voices()
|
40 |
+
return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices}
|
41 |
|
42 |
+
async def generate_audio_with_voice_prefix(text_segment, default_voice, rate, pitch):
|
43 |
+
"""Generates audio for a text segment, handling voice prefixes."""
|
|
|
|
|
|
|
|
|
44 |
current_voice_full = default_voice
|
45 |
current_voice_short = current_voice_full.split(" - ")[0] if current_voice_full else ""
|
46 |
current_rate = rate
|
47 |
current_pitch = pitch
|
48 |
processed_text = text_segment.strip()
|
49 |
+
voice1_full = "en-AU-WilliamNeural - en-AU (Male)"
|
50 |
+
voice1_short = voice1_full.split(" - ")[0]
|
51 |
+
voice1F_full ="en-GB-SoniaNeural - en-GB (Female)"
|
52 |
+
voice1F_short = voice1F_full.split(" - ")[0]
|
53 |
+
voice2_full = "en-GB-RyanNeural - en-GB (Male)"
|
54 |
+
voice2_short = voice2_full.split(" - ")[0]
|
55 |
+
voice2F_full = "en-US-JennyNeural - en-US (Female)"
|
56 |
+
voice2F_short = voice2F_full.split(" - ")[0]
|
57 |
+
voice3_full ="en-US-BrianMultilingualNeural - en-US (Male)" #good for reading
|
58 |
+
voice3_short = voice3_full.split(" - ")[0]
|
59 |
+
voice3F_full = "en-HK-YanNeural - en-HK (Female)"
|
60 |
+
voice3F_short = voice3F_full.split(" - ")[0]
|
61 |
+
voice4_full = "en-GB-ThomasNeural - en-GB (Male)"
|
62 |
+
voice4_short = voice4_full.split(" - ")[0]
|
63 |
+
voice4F_full ="en-US-EmmaNeural - en-US (Female)"
|
64 |
+
voice4F_short = voice4F_full.split(" - ")[0]
|
65 |
+
voice5_full = "en-GB-RyanNeural - en-GB (Male)" #Old Man
|
66 |
+
voice5_short = voice5_full.split(" - ")[0]
|
67 |
+
voice6_full = "en-GB-MaisieNeural - en-GB (Female)" #Child
|
68 |
+
voice6_short = voice6_full.split(" - ")[0]
|
69 |
+
voice7_full = "vi-VN-HoaiMyNeural - vi-VN (Female)" #Vietnamese
|
70 |
+
voice7_short = voice7_full.split(" - ")[0]
|
71 |
+
voice8_full = "vi-VN-NamMinhNeural - vi-VN (Male)" #Vietnamese
|
72 |
+
voice8_short = voice8_full.split(" - ")[0]
|
73 |
+
voice9F_full = "de-DE-SeraphinaMultilingualNeural - de-DE (Female)" #Vietnamese
|
74 |
+
voice9F_short = voice7_full.split(" - ")[0]
|
75 |
+
voice9_full = "ko-KR-HyunsuMultilingualNeural - ko-KR (Male)" #Vietnamese
|
76 |
+
voice9_short = voice8_full.split(" - ")[0]
|
77 |
+
detect=0
|
78 |
+
if processed_text.startswith("1F"):
|
79 |
+
current_voice_short = voice1F_short
|
80 |
+
current_pitch = 25
|
81 |
+
detect=1
|
82 |
+
#processed_text = processed_text[2:].strip()
|
83 |
+
elif processed_text.startswith("2F"):
|
84 |
+
current_voice_short = voice2F_short
|
85 |
+
#processed_text = processed_text[2:].strip()
|
86 |
+
detect=1
|
87 |
+
elif processed_text.startswith("3F"):
|
88 |
+
current_voice_short = voice3F_short
|
89 |
+
#processed_text = processed_text[2:].strip()
|
90 |
+
detect=1
|
91 |
+
elif processed_text.startswith("4F"):
|
92 |
+
current_voice_short = voice4F_short
|
93 |
+
#processed_text = processed_text[2:].strip()
|
94 |
+
detect=1
|
95 |
+
elif processed_text.startswith("1M"):
|
96 |
+
current_voice_short = voice1_short
|
97 |
+
#processed_text = processed_text[2:].strip()
|
98 |
+
detect=1
|
99 |
+
elif processed_text.startswith("2M"):
|
100 |
+
current_voice_short = voice2_short
|
101 |
+
#processed_text = processed_text[2:].strip()
|
102 |
+
detect=1
|
103 |
+
elif processed_text.startswith("3M"):
|
104 |
+
current_voice_short = voice3_short
|
105 |
+
#processed_text = processed_text[2:].strip()
|
106 |
+
detect=1
|
107 |
+
elif processed_text.startswith("4M"):
|
108 |
+
current_voice_short = voice4_short
|
109 |
+
#processed_text = processed_text[2:].strip()
|
110 |
+
detect=1
|
111 |
+
elif processed_text.startswith("1O"): # Old man voice
|
112 |
+
current_voice_short = voice5_short
|
113 |
+
current_pitch = -20
|
114 |
+
current_rate = -10
|
115 |
+
#processed_text = processed_text[2:].strip()
|
116 |
+
detect=1
|
117 |
+
elif processed_text.startswith("1C"): #Child voice
|
118 |
+
current_voice_short = voice6_short
|
119 |
+
#processed_text = processed_text[2:].strip()
|
120 |
+
detect=1
|
121 |
+
elif processed_text.startswith("1V"): #Female VN
|
122 |
+
current_voice_short = voice7_short
|
123 |
+
#processed_text = processed_text[2:].strip()
|
124 |
+
detect=1
|
125 |
+
elif processed_text.startswith("2V"):
|
126 |
+
current_voice_short = voice8_short
|
127 |
+
#processed_text = processed_text[2:].strip()
|
128 |
+
detect=1
|
129 |
+
elif processed_text.startswith("3V"): #Female VN
|
130 |
+
current_voice_short = voice9F_short
|
131 |
+
current_pitch = 25
|
132 |
+
#processed_text = processed_text[2:].strip()
|
133 |
+
detect=1
|
134 |
+
elif processed_text.startswith("4V"):
|
135 |
+
current_voice_short = voice9_short
|
136 |
+
current_pitch = -20
|
137 |
+
#processed_text = processed_text[2:].strip()
|
138 |
+
detect=1
|
139 |
+
#Looking for number following prefix, which are pitch values.
|
140 |
+
#match = re.search(r'[A-Za-z]\d+', part) # Look for a letter followed by one or more digits
|
141 |
+
match = re.search(r'[A-Za-z]+\-?\d+', processed_text) # Look for a letter(s) followed by an optional '-' and digits
|
142 |
if match:
|
143 |
+
# Extract the prefix (e.g., '2F') and number (e.g., '-20')
|
144 |
+
prefix = ''.join([ch for ch in match.group() if ch.isalpha()]) # Extract letters (prefix)
|
145 |
+
number = int(''.join([ch for ch in match.group() if ch.isdigit() or ch == '-'])) # Extract digits (number)
|
146 |
+
current_pitch += number
|
147 |
+
# Step 2: Remove the found number from the string
|
148 |
+
new_text = re.sub(r'[A-Za-z]+\-?\d+', '', processed_text, count=1).strip() # Remove prefix and number (e.g., '2F-20')
|
149 |
+
#processed_text = new_text[2:] #cut out the prefix like 1F, 3M etc
|
150 |
+
processed_text = new_text[len(prefix):] # Dynamically remove the prefix part
|
151 |
+
else:
|
152 |
+
if detect:
|
153 |
+
processed_text = part[2:]
|
154 |
if processed_text:
|
155 |
rate_str = f"{current_rate:+d}%"
|
156 |
pitch_str = f"{current_pitch:+d}Hz"
|
157 |
+
communicate = edge_tts.Communicate(processed_text, current_voice_short, rate=rate_str, pitch=pitch_str)
|
158 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
|
159 |
+
audio_path = tmp_file.name
|
160 |
+
await communicate.save(audio_path)
|
161 |
+
return audio_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
return None
|
163 |
|
164 |
+
async def process_transcript_line(line, default_voice, rate, pitch):
|
165 |
+
"""Processes a single transcript line with HH:MM:SS.milliseconds timestamp and quoted text segments."""
|
166 |
+
match = re.match(r'(\d{2}):(\d{2}):(\d{2})\.(\d{3})\s+(.*)', line)
|
167 |
if match:
|
168 |
+
hours, minutes, seconds, milliseconds, text_parts = match.groups()
|
169 |
start_time_ms = (
|
170 |
+
int(hours) * 3600000 +
|
171 |
+
int(minutes) * 60000 +
|
172 |
+
int(seconds) * 1000 +
|
173 |
+
int(milliseconds)
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
)
|
|
|
|
|
175 |
audio_segments = []
|
176 |
+
split_parts = re.split(r'(")', text_parts) # Split by quote marks, keeping the quotes
|
177 |
+
|
178 |
process_next = False
|
179 |
for part in split_parts:
|
180 |
if part == '"':
|
181 |
process_next = not process_next
|
182 |
continue
|
183 |
if process_next and part.strip():
|
184 |
+
audio_path = await generate_audio_with_voice_prefix(part, default_voice, rate, pitch)
|
185 |
if audio_path:
|
186 |
audio_segments.append(audio_path)
|
187 |
elif not process_next and part.strip():
|
188 |
+
audio_path = await generate_audio_with_voice_prefix(part, default_voice, rate, pitch) # Process unquoted text with default voice
|
189 |
if audio_path:
|
190 |
audio_segments.append(audio_path)
|
|
|
|
|
191 |
|
192 |
+
return start_time_ms, audio_segments
|
193 |
+
return None, None
|
194 |
|
195 |
+
async def transcript_to_speech(transcript_text, voice, rate, pitch):
|
196 |
if not transcript_text.strip():
|
197 |
return None, gr.Warning("Please enter transcript text.")
|
198 |
if not voice:
|
|
|
201 |
lines = transcript_text.strip().split('\n')
|
202 |
timed_audio_segments = []
|
203 |
max_end_time_ms = 0
|
204 |
+
|
205 |
for line in lines:
|
206 |
+
start_time, audio_paths = await process_transcript_line(line, voice, rate, pitch)
|
207 |
if start_time is not None and audio_paths:
|
208 |
combined_line_audio = AudioSegment.empty()
|
|
|
|
|
209 |
for path in audio_paths:
|
210 |
+
try:
|
211 |
+
audio = AudioSegment.from_mp3(path)
|
212 |
+
combined_line_audio += audio
|
213 |
+
os.remove(path)
|
214 |
+
except FileNotFoundError:
|
215 |
+
print(f"Warning: Audio file not found: {path}")
|
216 |
+
|
217 |
if combined_line_audio:
|
218 |
timed_audio_segments.append({'start': start_time, 'audio': combined_line_audio})
|
219 |
max_end_time_ms = max(max_end_time_ms, start_time + len(combined_line_audio))
|
220 |
elif audio_paths:
|
221 |
for path in audio_paths:
|
222 |
+
try:
|
223 |
+
os.remove(path)
|
224 |
+
except FileNotFoundError:
|
225 |
+
pass # Clean up even if no timestamp
|
226 |
+
|
227 |
if not timed_audio_segments:
|
228 |
return None, "No processable audio segments found."
|
229 |
+
|
230 |
final_audio = AudioSegment.silent(duration=max_end_time_ms, frame_rate=24000)
|
231 |
for segment in timed_audio_segments:
|
232 |
final_audio = final_audio.overlay(segment['audio'], position=segment['start'])
|
233 |
+
|
234 |
combined_audio_path = tempfile.mktemp(suffix=".mp3")
|
235 |
final_audio.export(combined_audio_path, format="mp3")
|
236 |
return combined_audio_path, None
|
237 |
|
238 |
@spaces.GPU
|
239 |
+
def tts_interface(transcript, voice, rate, pitch):
|
240 |
+
audio, warning = asyncio.run(transcript_to_speech(transcript, voice, rate, pitch))
|
|
|
241 |
return audio, warning
|
242 |
|
243 |
async def create_demo():
|
|
|
244 |
voices = await get_voices()
|
245 |
default_voice = "en-US-AndrewMultilingualNeural - en-US (Male)"
|
246 |
+
description = """
|
247 |
+
Process timestamped text (HH:MM:SS.milliseconds) with voice changes within quotes.
|
248 |
+
Format: `HH:MM:SS.milliseconds "VoicePrefix Text" more text "AnotherVoicePrefix More Text"`
|
249 |
+
Example:
|
250 |
+
```
|
251 |
+
00:00:00.000 "This is the default voice." more default. "1F Now a female voice." and back to default.
|
252 |
+
00:00:05.000 "1C Yes," said the child, "it is fun!"
|
253 |
+
```
|
254 |
+
***************************************************************************************************
|
255 |
+
1M = en-AU-WilliamNeural - en-AU (Male)
|
256 |
+
1F = en-GB-SoniaNeural - en-GB (Female)
|
257 |
+
2M = en-GB-RyanNeural - en-GB (Male)
|
258 |
+
2F = en-US-JennyNeural - en-US (Female)
|
259 |
+
3M = en-US-BrianMultilingualNeural - en-US (Male)
|
260 |
+
3F = en-HK-YanNeural - en-HK (Female)
|
261 |
+
4M = en-GB-ThomasNeural - en-GB (Male)
|
262 |
+
4F = en-US-EmmaNeural - en-US (Female)
|
263 |
+
1O = en-GB-RyanNeural - en-GB (Male) # Old Man
|
264 |
+
1C = en-GB-MaisieNeural - en-GB (Female) # Child
|
265 |
+
1V = vi-VN-HoaiMyNeural - vi-VN (Female) # Vietnamese (Female)
|
266 |
+
2V = vi-VN-NamMinhNeural - vi-VN (Male) # Vietnamese (Male)
|
267 |
+
3V = vi-VN-HoaiMyNeural - vi-VN (Female) # Vietnamese (Female)
|
268 |
+
4V = vi-VN-NamMinhNeural - vi-VN (Male) # Vietnamese (Male)
|
269 |
+
****************************************************************************************************
|
270 |
+
"""
|
271 |
+
demo = gr.Interface(
|
272 |
+
fn=tts_interface,
|
273 |
+
inputs=[
|
274 |
+
gr.Textbox(label="Timestamped Text with Voice Changes", lines=10, placeholder='00:00:00.000 "Text" more text "1F Different Voice"'),
|
275 |
+
gr.Dropdown(choices=[""] + list(voices.keys()), label="Select Default Voice", value=default_voice),
|
276 |
+
gr.Slider(minimum=-50, maximum=50, value=0, label="Speech Rate Adjustment (%)", step=1),
|
277 |
+
gr.Slider(minimum=-50, maximum=50, value=0, label="Pitch Adjustment (Hz)", step=1)
|
278 |
+
],
|
279 |
+
outputs=[
|
280 |
+
gr.Audio(label="Generated Audio", type="filepath"),
|
281 |
+
gr.Markdown(label="Warning", visible=False)
|
282 |
+
],
|
283 |
+
title="TTS with HH:MM:SS.milliseconds and In-Quote Voice Switching",
|
284 |
+
description=description,
|
285 |
+
analytics_enabled=False,
|
286 |
+
allow_flagging=False
|
287 |
+
)
|
288 |
+
return demo
|
289 |
+
|
290 |
+
if __name__ == "__main__":
|
291 |
+
demo = asyncio.run(create_demo())
|
292 |
+
demo.launch()
|