danhtran2mind's picture
Update app.py
3715ad1 verified
raw
history blame
27 kB
import logging
import re
import time
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from peft import PeftModel
from threading import Thread
import gradio as gr
import gc
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# LoRA configurations
lora_configs = {
"Gemma-3-1B-Instruct-Vi-Medical-LoRA": {
"base_model": "unsloth/gemma-3-1b-it",
"lora_adapter": "danhtran2mind/Gemma-3-1B-Instruct-Vi-Medical-LoRA"
},
"Gemma-3-1B-GRPO-Vi-Medical-LoRA": {
"base_model": "unsloth/gemma-3-1b-it",
"lora_adapter": "danhtran2mind/Gemma-3-1B-GRPO-Vi-Medical-LoRA"
},
"Llama-3.2-3B-Instruct-Vi-Medical-LoRA": {
"base_model": "unsloth/Llama-3.2-3B-Instruct",
"lora_adapter": "danhtran2mind/Llama-3.2-3B-Instruct-Vi-Medical-LoRA"
},
"Llama-3.2-1B-Instruct-Vi-Medical-LoRA": {
"base_model": "unsloth/Llama-3.2-1B-Instruct",
"lora_adapter": "danhtran2mind/Llama-3.2-1B-Instruct-Vi-Medical-LoRA"
},
"Llama-3.2-3B-Reasoning-Vi-Medical-LoRA": {
"base_model": "unsloth/Llama-3.2-3B-Instruct",
"lora_adapter": "danhtran2mind/Llama-3.2-3B-Reasoning-Vi-Medical-LoRA"
},
"Qwen-3-0.6B-Instruct-Vi-Medical-LoRA": {
"base_model": "Qwen/Qwen3-0.6B",
"lora_adapter": "danhtran2mind/Qwen-3-0.6B-Instruct-Vi-Medical-LoRA"
},
"Qwen-3-0.6B-Reasoning-Vi-Medical-LoRA": {
"base_model": "Qwen/Qwen3-0.6B",
"lora_adapter": "danhtran2mind/Qwen-3-0.6B-Reasoning-Vi-Medical-LoRA"
}
}
# Model settings
MAX_INPUT_TOKEN_LENGTH = 4096
DEFAULT_MAX_NEW_TOKENS = 512
MAX_MAX_NEW_TOKENS = 2048
# Global model and tokenizer
model = None
tokenizer = None
current_model_id = None
# Prompt templates for each LoRA model
def case_1_prompt(messages):
"""Prompt style for Gemma-3-1B-Instruct-Vi-Medical-LoRA: Simple user prompt with chat template"""
return tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=False
)
def case_2_prompt(messages):
"""Prompt style for Gemma-3-1B-GRPO-Vi-Medical-LoRA: System prompt with reasoning and answer format"""
SYSTEM_PROMPT = """
Trả lời theo định dạng sau đây:
<reasoning>
...
</reasoning>
<answer>
...
</answer>
"""
print("messages:##### ", messages)
# print("isinstance(messages, list): ", isinstance(messages, list))
# print('messages[0].get("role"): ', messages[0].get("role"))
if not messages or not isinstance(messages, list) or not messages[0].get("role") == "user":
return tokenizer.apply_chat_template(
[{"role": "system", "content": SYSTEM_PROMPT}, {"role": "user", "content": "Vui lòng cung cấp câu hỏi để tôi trả lời."}],
add_generation_prompt=True,
tokenize=False
)
conversation = [{"role": "system", "content": SYSTEM_PROMPT}]
for i, msg in enumerate(messages):
conversation.append(msg)
if msg["role"] == "user" and (i == len(messages) - 1 or messages[i + 1]["role"] != "assistant"):
conversation.append({"role": "assistant", "content": ""})
return tokenizer.apply_chat_template(
conversation,
add_generation_prompt=True,
tokenize=False
)
def case_3_prompt(messages):
"""Prompt style for Llama-3.2-3B-Instruct-Vi-Medical-LoRA: Extract answer from context"""
instruction = '''Bạn là một trợ lý hữu ích được giao nhiệm vụ trích xuất các đoạn văn trả lời câu hỏi của người dùng từ một ngữ cảnh cho trước. Xuất ra các đoạn văn chính xác từng từ một trả lời câu hỏi của người dùng. Không xuất ra bất kỳ văn bản nào khác ngoài các đoạn văn trong ngữ cảnh. Xuất ra lượng tối thiểu để trả lời câu hỏi, ví dụ chỉ 2-3 từ từ đoạn văn. Nếu không thể tìm thấy câu trả lời trong ngữ cảnh, xuất ra 'Ngữ cảnh không cung cấp câu trả lời...' '''
return tokenizer.apply_chat_template(
[{"role": "system", "content": instruction}] + messages,
add_generation_prompt=True,
tokenize=False
)
def case_4_prompt(messages):
"""Prompt style for Llama-3.2-1B-Instruct-Vi-Medical-LoRA: Same as Llama-3.2-3B-Instruct-Vi-Medical-LoRA"""
return case_3_prompt(messages)
def case_5_prompt(question):
"""Prompt style for Llama-3.2-3B-Reasoning-Vi-Medical-LoRA: Reasoning prompt with think tag"""
inference_prompt_style = """Bên dưới là một hướng dẫn mô tả một tác vụ, đi kèm với một thông tin đầu vào để cung cấp thêm ngữ cảnh.
Hãy viết một phản hồi để hoàn thành yêu cầu một cách phù hợp.
Trước khi trả lời, hãy suy nghĩ cẩn thận về câu hỏi và tạo một chuỗi suy nghĩ từng bước để đảm bảo phản hồi logic và chính xác.
### Instruction:
Bạn là một chuyên gia y tế có kiến thức chuyên sâu về lập luận lâm sàng, chẩn đoán và lập kế hoạch điều trị.
Vui lòng trả lời câu hỏi y tế sau đây.
### Question:
{}
### Response:
<think>
"""
return inference_prompt_style.format(question) + tokenizer.eos_token
def case_6_prompt(messages):
"""Prompt style for Qwen-3-0.6B-Instruct-Vi-Medical-LoRA: Qwen-specific with enable_thinking=False"""
return tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=False,
enable_thinking=False
)
def case_7_prompt(question):
"""Prompt style for Qwen-3-0.6B-Reasoning-Vi-Medical-LoRA: Same as Llama-3.2-3B-Reasoning-Vi-Medical-LoRA"""
return case_5_prompt(question)
# Map LoRA configuration names to prompt functions
prompt_functions = {
"Gemma-3-1B-Instruct-Vi-Medical-LoRA": case_1_prompt,
"Gemma-3-1B-GRPO-Vi-Medical-LoRA": case_2_prompt,
"Llama-3.2-3B-Instruct-Vi-Medical-LoRA": case_3_prompt,
"Llama-3.2-1B-Instruct-Vi-Medical-LoRA": case_4_prompt,
"Llama-3.2-3B-Reasoning-Vi-Medical-LoRA": case_5_prompt,
"Qwen-3-0.6B-Instruct-Vi-Medical-LoRA": case_6_prompt,
"Qwen-3-0.6B-Reasoning-Vi-Medical-LoRA": case_7_prompt
}
def load_model(model_id, chatbot_state):
"""Load the model, tokenizer, and apply LoRA adapter for the given model ID."""
global model, tokenizer, current_model_id
try:
logger.info(f"Loading model: {model_id}")
print(f"Changing to model: {model_id}")
if model is not None:
print("Clearing previous model from RAM/VRAM...")
del model
del tokenizer
model = None
tokenizer = None
gc.collect()
torch.cuda.empty_cache() if torch.cuda.is_available() else None
print("Memory cleared successfully.")
if model_id not in lora_configs:
raise ValueError(f"Invalid model ID: {model_id}")
base_model_name = lora_configs[model_id]["base_model"]
lora_adapter_name = lora_configs[model_id]["lora_adapter"]
tokenizer = AutoTokenizer.from_pretrained(
base_model_name,
trust_remote_code=True
)
tokenizer.use_default_system_prompt = False
if tokenizer.pad_token is None or tokenizer.pad_token == tokenizer.eos_token:
tokenizer.pad_token = tokenizer.unk_token or "<pad>"
logger.info(f"Set pad_token to {tokenizer.pad_token}")
model = AutoModelForCausalLM.from_pretrained(
base_model_name,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True
)
model = PeftModel.from_pretrained(model, lora_adapter_name)
model.eval()
model.config.pad_token_id = tokenizer.pad_token_id
current_model_id = model_id
chatbot_state = []
return f"Successfully loaded model: {model_id} with LoRA adapter {lora_adapter_name}", chatbot_state
except Exception as e:
logger.error(f"Failed to load model or tokenizer: {str(e)}")
return f"Error: Failed to load model {model_id}: {str(e)}", chatbot_state
def format_time(seconds_float):
total_seconds = int(round(seconds_float))
hours = total_seconds // 3600
remaining_seconds = total_seconds % 3600
minutes = remaining_seconds // 60
seconds = remaining_seconds % 60
if hours > 0:
return f"{hours}h {minutes}m {seconds}s"
elif minutes > 0:
return f"{minutes}m {seconds}s"
else:
return f"{seconds}s"
DESCRIPTION = '''
<h1><span class="intro-icon">⚕️</span> Medical Chatbot with LoRA Models</h1>
<h2>AI-Powered Medical Insights</h2>
<div class="intro-highlight">
<strong>Explore our advanced models, fine-tuned with LoRA for medical reasoning in Vietnamese.</strong>
</div>
<div class="intro-disclaimer">
<strong><span class="intro-icon">ℹ️</span> Notice:</strong> For research purposes only. AI responses may have limitations due to development, datasets, and architecture. <strong>Always consult a medical professional for health advice 🩺</strong>.
</div>
'''
CSS = """
.intro-container {
max-width: 800px;
padding: 40px;
background: #ffffff;
border-radius: 15px;
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.1);
text-align: center;
animation: fadeIn 1s ease-in-out;
}
h1 {
font-size: 1.5em;
color: #007bff;
text-transform: uppercase;
letter-spacing: 1px;
margin-bottom: 20px;
}
h2 {
font-size: 1.3em;
color: #555555;
margin-bottom: 30px;
}
.intro-highlight {
font-size: 1.5em;
color: #333333;
margin: 20px 0;
padding: 20px;
background: #f8f9fa;
border-left: 5px solid #007bff;
border-radius: 10px;
transition: transform 0.3s ease;
}
.intro-highlight:hover {
transform: scale(1.02);
}
.intro-disclaimer {
font-size: 1.3em;
color: #333333;
background: #e9ecef;
padding: 20px;
border-radius: 10px;
border: 1px solid #007bff;
margin-top: 30px;
}
strong {
color: #007bff;
font-weight: bold;
}
.intro-icon {
font-size: 1.4em;
margin-right: 8px;
}
@keyframes fadeIn {
0% { opacity: 0; transform: translateY(-20px); }
100% { opacity: 1; transform: translateY(0); }
}
.spinner {
animation: spin 1s linear infinite;
display: inline-block;
margin-right: 8px;
}
@keyframes spin {
from { transform: rotate(0deg); }
to { transform: rotate(360deg); }
}
.thinking-summary {
cursor: pointer;
padding: 8px;
background: #f5f5f5;
border-radius: 4px;
margin: 4px 0;
}
.thought-content {
padding: 10px;
background: none;
border-radius: 4px;
margin: 5px 0;
}
.thinking-container {
border-left: 3px solid #facc15;
padding-left: 10px;
margin: 8px 0;
background: none;
}
.thinking-container:empty {
background: #e0e0e0;
}
details:not([open]) .thinking-container {
border-left-color: #290c15;
}
details {
border: 1px solid #e0e0e0 !important;
border-radius: 8px !important;
padding: 12px !important;
margin: 8px 0 !important;
transition: border-color 0.2s;
}
.think-section {
background-color: #e6f3ff;
border-left: 4px solid #4a90e2;
padding: 15px;
margin: 10px 0;
border-radius: 6px;
font-size: 14px;
}
.final-answer {
background-color: #f0f4f8;
border-left: 4px solid #2ecc71;
padding: 15px;
margin: 10px 0;
border-radius: 6px;
font-size: 14px;
}
#output-container {
position: relative;
}
.copy-button {
position: absolute;
top: 10px;
right: 10px;
padding: 5px 10px;
background-color: #4a90e2;
color: white;
border: none;
border-radius: 4px;
cursor: pointer;
}
.copy-button:hover {
background-color: #357abd;
}
"""
JS_SCRIPTS = """
<script>
function copyToClipboard(elementId) {
const element = document.getElementById(elementId);
let text = element.innerText.replace(/^Thinking Process:\\n|^Final Answer:\\n/, '');
text = text.replace(/\\mjx-[^\\s]+/g, '');
navigator.clipboard.writeText(text).then(() => {
alert('Copied to clipboard!');
}).catch(err => {
console.error('Failed to copy: ', err);
});
}
</script>
<style>
.chatbot .message.assistant {
position: relative;
}
.chatbot .message.assistant::after {
content: 'Copy';
position: absolute;
top: 10px;
right: 10px;
padding: 5px 10px;
background-color: #4a90e2;
color: white;
border: none;
border-radius: 4px;
cursor: pointer;
}
.chatbot .message.assistant:hover::after {
background-color: #357abd;
}
</style>
"""
def user(message, history):
if not isinstance(history, list):
history = []
return "", history + [[message, None]]
class ParserState:
__slots__ = ['answer', 'thought', 'in_think', 'in_answer', 'start_time', 'last_pos', 'total_think_time']
def __init__(self):
self.answer = ""
self.thought = ""
self.in_think = False
self.in_answer = False
self.start_time = 0
self.last_pos = 0
self.total_think_time = 0.0
def parse_response(text, state):
buffer = text[state.last_pos:]
state.last_pos = len(text)
while buffer:
if not state.in_think and not state.in_answer:
think_start = buffer.find('<think>')
reasoning_start = buffer.find('<reasoning>')
answer_start = buffer.find('<answer>')
starts = []
if think_start != -1:
starts.append((think_start, '<think>', 7, 'think'))
if reasoning_start != -1:
starts.append((reasoning_start, '<reasoning>', 11, 'think'))
if answer_start != -1:
starts.append((answer_start, '<answer>', 8, 'answer'))
if not starts:
state.answer += buffer
break
start_pos, start_tag, tag_length, mode = min(starts, key=lambda x: x[0])
state.answer += buffer[:start_pos]
if mode == 'think':
state.in_think = True
state.start_time = time.perf_counter()
else:
state.in_answer = True
buffer = buffer[start_pos + tag_length:]
elif state.in_think:
think_end = buffer.find('</think>')
reasoning_end = buffer.find('</reasoning>')
ends = []
if think_end != -1:
ends.append((think_end, '</think>', 8))
if reasoning_end != -1:
ends.append((reasoning_end, '</reasoning>', 12))
if ends:
end_pos, end_tag, tag_length = min(ends, key=lambda x: x[0])
state.thought += buffer[:end_pos]
duration = time.perf_counter() - state.start_time
state.total_think_time += duration
state.in_think = False
buffer = buffer[end_pos + tag_length:]
if end_tag == '</reasoning>':
state.answer += buffer
break
else:
state.thought += buffer
break
elif state.in_answer:
answer_end = buffer.find('</answer>')
if answer_end != -1:
state.answer += buffer[:answer_end]
state.in_answer = False
buffer = buffer[answer_end + 9:]
else:
state.answer += buffer
break
elapsed = time.perf_counter() - state.start_time if state.in_think else 0
return state, elapsed
def format_response(state, elapsed):
answer_part = state.answer
collapsible = []
collapsed = "<details open>"
if state.thought or state.in_think:
if state.in_think:
total_elapsed = state.total_think_time + elapsed
formatted_time = format_time(total_elapsed)
status = f"💭 Thinking for {formatted_time}"
else:
formatted_time = format_time(state.total_think_time)
status = f"✅ Thought for {formatted_time}"
collapsed = "<details>"
collapsible.append(
f"{collapsed}<summary>{status}</summary>\n\n<div class='thinking-container'>\n{state.thought}\n</div>\n</details>"
)
# print("collapsible: ", collapsible)
# print("answer_part: ", answer_part)
return collapsible, answer_part
def remove_tags(text):
if text is None:
return None
return re.sub(r'<[^>]+>', ' ', text).strip()
def generate_response(history, temperature, top_p, top_k, max_tokens, seed, active_gen, model_id, auto_clear):
global model, tokenizer, current_model_id
if auto_clear:
history = [history[-1]]
# Apply the function to the second element of each sublist
history = [[item[0], remove_tags(item[1])] for item in history]
try:
if not history or not isinstance(history, list):
logger.error("History is empty or not a list")
history = [[None, "Error: Conversation history is empty or invalid"]]
yield history
return
if not isinstance(history[-1], (list, tuple)) or len(history[-1]) < 1 or not history[-1][0]:
logger.error("Last history entry is invalid or missing user message")
history = history[:-1] + [[history[-1][0] if history else None, "Error: No valid user message provided"]]
yield history
return
if model is None or tokenizer is None or model_id != current_model_id:
status, history = load_model(model_id, history)
if "Error" in status:
logger.error(status)
history[-1][1] = status
yield history
return
torch.manual_seed(int(seed))
if torch.cuda.is_available():
torch.cuda.manual_seed(int(seed))
torch.cuda.manual_seed_all(int(seed))
if model_id not in prompt_functions:
logger.error(f"No prompt function defined for model_id: {model_id}")
history[-1][1] = f"Error: No prompt function defined for model {model_id}"
yield history
return
prompt_fn = prompt_functions[model_id]
if model_id in [
"Llama-3.2-3B-Reasoning-Vi-Medical-LoRA",
"Qwen-3-0.6B-Reasoning-Vi-Medical-LoRA"
]:
text = prompt_fn(history[-1][0])
inputs = tokenizer(
[text],
return_tensors="pt",
padding=True,
truncation=True,
max_length=MAX_INPUT_TOKEN_LENGTH
)
else:
conversation = []
for msg in history:
if msg[0]:
conversation.append({"role": "user", "content": msg[0]})
if msg[1]:
clean_text = ' '.join(line for line in msg[1].split('\n') if not line.startswith('✅ Thought for')).strip()
conversation.append({"role": "assistant", "content": clean_text})
elif msg[0] and not msg[1]:
conversation.append({"role": "assistant", "content": ""})
if not conversation:
logger.error("No valid messages in conversation history")
history[-1][1] = "Error: No valid messages in conversation history"
yield history
return
if model_id in [
"Gemma-3-1B-GRPO-Vi-Medical-LoRA"
]:
conversation= conversation[-2:]
text = prompt_fn(conversation)
tokenizer_kwargs = {
"return_tensors": "pt",
"padding": True,
"truncation": True,
"max_length": MAX_INPUT_TOKEN_LENGTH
}
inputs = tokenizer(text, **tokenizer_kwargs)
if inputs is None or "input_ids" not in inputs:
logger.error("Tokenizer returned invalid or None output")
history[-1][1] = "Error: Failed to tokenize input"
yield history
return
input_ids = inputs["input_ids"].to(model.device)
attention_mask = inputs.get("attention_mask").to(model.device) if "attention_mask" in inputs else None
generate_kwargs = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"max_new_tokens": max_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"num_beams": 1,
"repetition_penalty": 1.0,
"pad_token_id": tokenizer.pad_token_id,
"eos_token_id": tokenizer.eos_token_id,
"use_cache": True,
"cache_implementation": "dynamic",
}
streamer = TextIteratorStreamer(tokenizer, timeout=360.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs["streamer"] = streamer
def run_generation():
try:
model.generate(**generate_kwargs)
except Exception as e:
logger.error(f"Generation failed: {str(e)}")
raise
thread = Thread(target=run_generation)
thread.start()
state = ParserState()
if model_id in [
"Llama-3.2-3B-Reasoning-Vi-Medical-LoRA",
"Qwen-3-0.6B-Reasoning-Vi-Medical-LoRA"
]:
full_response = "<think>"
else:
full_response = ""
for text in streamer:
if not active_gen[0]:
logger.info("Generation stopped by user")
break
if text:
logger.debug(f"Raw streamer output: {text}")
text = re.sub(r'<\|\w+\|>', '', text)
full_response += text
state, elapsed = parse_response(full_response, state)
collapsible, answer_part = format_response(state, elapsed)
history[-1][1] = "\n\n".join(collapsible + [answer_part])
yield history
else:
logger.debug("Streamer returned empty text")
thread.join()
thread = None
state, elapsed = parse_response(full_response, state)
collapsible, answer_part = format_response(state, elapsed)
history[-1][1] = "\n\n".join(collapsible + [answer_part])
if not full_response:
logger.warning("No response generated by model")
history[-1][1] = "No response generated. Please try again or select a different model."
print("full_response: ", full_response)
yield history
except Exception as e:
logger.error(f"Error in generate: {str(e)}")
if not history or not isinstance(history, list):
history = [[None, f"Error: {str(e)}. Please try again or select a different model."]]
else:
history[-1][1] = f"Error: {str(e)}. Please try again or select a different model."
yield history
finally:
active_gen[0] = False
MODEL_IDS = list(lora_configs.keys())
load_model(MODEL_IDS[0], [])
with gr.Blocks(css=CSS, theme=gr.themes.Default()) as demo:
# gr.Markdown(DESCRIPTION)
gr.HTML(DESCRIPTION)
gr.HTML(JS_SCRIPTS)
active_gen = gr.State([False])
chatbot = gr.Chatbot(
elem_id="chatbot",
height=500,
show_label=False,
render_markdown=True
)
with gr.Row():
msg = gr.Textbox(
label="Message",
placeholder="Type your medical query in Vietnamese...",
container=False,
scale=4
)
submit_btn = gr.Button("Send", variant='primary', scale=1)
with gr.Column(scale=2):
with gr.Row():
clear_btn = gr.Button("Clear", variant='secondary')
stop_btn = gr.Button("Stop", variant='stop')
with gr.Accordion("Parameters", open=False):
model_dropdown = gr.Dropdown(
choices=MODEL_IDS,
value=MODEL_IDS[0],
label="Select Model",
interactive=True
)
temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.7, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p")
top_k = gr.Slider(minimum=1, maximum=100, value=64, step=1, label="Top-k")
max_tokens = gr.Slider(minimum=128, maximum=4084, value=512, step=32, label="Max Tokens")
seed = gr.Slider(minimum=0, maximum=2 ** 32, value=42, step=1, label="Random Seed")
auto_clear = gr.Checkbox(label="Auto Clear History", value=True, info="Clears internal conversation history after each response but keeps displayed messages.")
gr.Examples(
examples=[
["Khi nghi ngờ bị loét dạ dày tá tràng nên đến khoa nào tại bệnh viện để thăm khám?"],
["Triệu chứng của loét dạ dày tá tràng là gì?"],
["Tôi bị mất ngủ, tôi phải làm gì?"],
["Tôi bị trĩ, tôi có nên mổ không?"]
],
inputs=msg,
label="Example Medical Queries"
)
model_load_output = gr.Textbox(label="Model Load Status")
model_dropdown.change(
fn=load_model,
inputs=[model_dropdown, chatbot],
outputs=[model_load_output, chatbot]
)
submit_event = submit_btn.click(
user, [msg, chatbot], [msg, chatbot], queue=False
).then(
lambda: [True], outputs=active_gen
).then(
generate_response, [chatbot, temperature, top_p, top_k, max_tokens, seed, active_gen, model_dropdown, auto_clear], chatbot
)
msg.submit(
user, [msg, chatbot], [msg, chatbot], queue=False
).then(
lambda: [True], outputs=active_gen
).then(
generate_response, [chatbot, temperature, top_p, top_k, max_tokens, seed, active_gen, model_dropdown, auto_clear], chatbot
)
stop_btn.click(
lambda: [False], None, active_gen, cancels=[submit_event]
)
clear_btn.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
try:
demo.launch(server_name="0.0.0.0", server_port=7860)
except Exception as e:
logger.error(f"Failed to launch Gradio app: {str(e)}")
raise