Spaces:
Runtime error
Runtime error
darthPanda
commited on
Commit
·
2c8c228
1
Parent(s):
41dac9c
hf7
Browse files
app.py
CHANGED
@@ -226,8 +226,12 @@ elif len(uploaded_file)>0:
|
|
226 |
############################ 3. Processing ############################
|
227 |
|
228 |
############################ 3.1. Sentiment Analysis ############################
|
|
|
|
|
|
|
229 |
labels = ['neutral', 'positive', 'negative']
|
230 |
-
values = df.label.
|
|
|
231 |
|
232 |
# removing words
|
233 |
words_to_remove = ["s", "quarter", "thank", "million", "Thank", "quetion", 'wa', 'rate', 'firt',
|
@@ -268,9 +272,14 @@ elif len(uploaded_file)>0:
|
|
268 |
if num_of_neu_sentences == 0:
|
269 |
neu_df.loc[0] = [0.0, '-------No neutral sentences found in report-------']
|
270 |
|
|
|
|
|
|
|
271 |
df_temp = neg_df
|
272 |
-
df_temp = df_temp['score'] * -1
|
273 |
-
|
|
|
|
|
274 |
|
275 |
############################ 3.2. Emotion Analysis ############################
|
276 |
|
@@ -313,10 +322,21 @@ elif len(uploaded_file)>0:
|
|
313 |
if num_of_surprise_sentences == 0:
|
314 |
df_surprise.loc[0] = [0.0, '-------No surprised sentences found in report-------']
|
315 |
|
|
|
|
|
|
|
|
|
|
|
316 |
df_temp_emotion = df_sadness
|
317 |
-
df_temp_emotion =
|
318 |
-
|
319 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
320 |
|
321 |
|
322 |
############################ 3.3. Intent Analysis ############################
|
@@ -427,7 +447,7 @@ elif len(uploaded_file)>0:
|
|
427 |
|
428 |
fig.add_trace(go.Indicator(
|
429 |
mode = "number",
|
430 |
-
value = int(
|
431 |
number = {"suffix": "%"},
|
432 |
title = {"text": "<span style='font-size:1.5em'>Sentiment Analysis</span><br><span style='font-size:0.8em;color:gray'>Positivity Score</span>"}
|
433 |
), row=4, col=3)
|
@@ -448,7 +468,7 @@ elif len(uploaded_file)>0:
|
|
448 |
|
449 |
fig.add_trace(go.Indicator(
|
450 |
mode = "gauge+number",
|
451 |
-
value =
|
452 |
domain = {'x': [0, 1], 'y': [0, 1]},
|
453 |
title = {'text': "Average of Score", 'font': {'size': 16}},
|
454 |
gauge = {
|
@@ -467,9 +487,9 @@ elif len(uploaded_file)>0:
|
|
467 |
}
|
468 |
), row=6, col=5)
|
469 |
|
470 |
-
if
|
471 |
fig.update_traces(title_text="Cummulative Sentiment Negative", selector=dict(type='indicator'), row=6, col=5)
|
472 |
-
elif
|
473 |
fig.update_traces(title_text="Cummulative Sentiment Neutral", selector=dict(type='indicator'), row=6, col=5)
|
474 |
else:
|
475 |
fig.update_traces(title_text="Cummulative Sentiment Positive", selector=dict(type='indicator'), row=6, col=5)
|
@@ -505,7 +525,7 @@ elif len(uploaded_file)>0:
|
|
505 |
|
506 |
fig.add_trace(go.Indicator(
|
507 |
mode = "number",
|
508 |
-
value = int(
|
509 |
number = {"suffix": "%"},
|
510 |
title = {"text": "<span style='font-size:1.5em'>Emotion Analysis</span><br><span style='font-size:0.8em;color:gray'>Happiness Score</span>"}
|
511 |
), row=26, col=3)
|
|
|
226 |
############################ 3. Processing ############################
|
227 |
|
228 |
############################ 3.1. Sentiment Analysis ############################
|
229 |
+
# labels = ['neutral', 'positive', 'negative']
|
230 |
+
# values = df.label.value_counts().to_list()
|
231 |
+
|
232 |
labels = ['neutral', 'positive', 'negative']
|
233 |
+
values = [df[df['label']=='neutral'].shape[0], df[df['label']=='positive'].shape[0], df[df['label']=='negative'].shape[0]]
|
234 |
+
|
235 |
|
236 |
# removing words
|
237 |
words_to_remove = ["s", "quarter", "thank", "million", "Thank", "quetion", 'wa', 'rate', 'firt',
|
|
|
272 |
if num_of_neu_sentences == 0:
|
273 |
neu_df.loc[0] = [0.0, '-------No neutral sentences found in report-------']
|
274 |
|
275 |
+
# df_temp = neg_df
|
276 |
+
# df_temp = df_temp['score'] * -1
|
277 |
+
# df_temp = pd.concat([df_temp, pos_df])
|
278 |
df_temp = neg_df
|
279 |
+
df_temp['score'] = df_temp['score'] * -1
|
280 |
+
df_temp_list = df_temp['score'].to_list() + pos_df['score'].to_list()
|
281 |
+
|
282 |
+
mean = sum(df_temp_list) / len(df_temp_list)
|
283 |
|
284 |
############################ 3.2. Emotion Analysis ############################
|
285 |
|
|
|
322 |
if num_of_surprise_sentences == 0:
|
323 |
df_surprise.loc[0] = [0.0, '-------No surprised sentences found in report-------']
|
324 |
|
325 |
+
# df_temp_emotion = df_sadness
|
326 |
+
# df_temp_emotion = pd.concat([df_sadness, df_anger])
|
327 |
+
# df_temp_emotion = df_temp_emotion['score'] * -1
|
328 |
+
# df_temp_emotion = pd.concat([df_temp_emotion, df_joy])
|
329 |
+
|
330 |
df_temp_emotion = df_sadness
|
331 |
+
df_temp_emotion['score'] = df_temp_emotion['score'] * -1
|
332 |
+
df_temp_emotion_list = df_temp_emotion['score'].to_list() + df_joy['score'].to_list()
|
333 |
+
emotion_mean = sum(df_temp_emotion_list) / len(df_temp_emotion_list)
|
334 |
+
|
335 |
+
# df_temp = neg_df
|
336 |
+
# df_temp['score'] = df_temp['score'] * -1
|
337 |
+
# df_temp_list = df_temp['score'].to_list() + pos_df['score'].to_list()
|
338 |
+
|
339 |
+
# mean = sum(df_temp_list) / len(df_temp_list)
|
340 |
|
341 |
|
342 |
############################ 3.3. Intent Analysis ############################
|
|
|
447 |
|
448 |
fig.add_trace(go.Indicator(
|
449 |
mode = "number",
|
450 |
+
value = int(mean*100),
|
451 |
number = {"suffix": "%"},
|
452 |
title = {"text": "<span style='font-size:1.5em'>Sentiment Analysis</span><br><span style='font-size:0.8em;color:gray'>Positivity Score</span>"}
|
453 |
), row=4, col=3)
|
|
|
468 |
|
469 |
fig.add_trace(go.Indicator(
|
470 |
mode = "gauge+number",
|
471 |
+
value = mean,
|
472 |
domain = {'x': [0, 1], 'y': [0, 1]},
|
473 |
title = {'text': "Average of Score", 'font': {'size': 16}},
|
474 |
gauge = {
|
|
|
487 |
}
|
488 |
), row=6, col=5)
|
489 |
|
490 |
+
if mean < -0.29:
|
491 |
fig.update_traces(title_text="Cummulative Sentiment Negative", selector=dict(type='indicator'), row=6, col=5)
|
492 |
+
elif mean < 0.29:
|
493 |
fig.update_traces(title_text="Cummulative Sentiment Neutral", selector=dict(type='indicator'), row=6, col=5)
|
494 |
else:
|
495 |
fig.update_traces(title_text="Cummulative Sentiment Positive", selector=dict(type='indicator'), row=6, col=5)
|
|
|
525 |
|
526 |
fig.add_trace(go.Indicator(
|
527 |
mode = "number",
|
528 |
+
value = int(emotion_mean*100),
|
529 |
number = {"suffix": "%"},
|
530 |
title = {"text": "<span style='font-size:1.5em'>Emotion Analysis</span><br><span style='font-size:0.8em;color:gray'>Happiness Score</span>"}
|
531 |
), row=26, col=3)
|