Spaces:
Sleeping
Sleeping
pipeline_tag: sentence-similarity | |
tags: | |
- sentence-transformers | |
- feature-extraction | |
- sentence-similarity | |
- transformers | |
library_name: generic | |
language: | |
- vi | |
widget: | |
- source_sentence: Làm thế nào Đại học Bách khoa Hà Nội thu hút sinh viên quốc tế? | |
sentences: | |
- >- | |
Đại học Bách khoa Hà Nội đã phát triển các chương trình đào tạo bằng tiếng | |
Anh để làm cho việc học tại đây dễ dàng hơn cho sinh viên quốc tế. | |
- >- | |
Môi trường học tập đa dạng và sự hỗ trợ đầy đủ cho sinh viên quốc tế tại Đại | |
học Bách khoa Hà Nội giúp họ thích nghi nhanh chóng. | |
- Hà Nội có khí hậu mát mẻ vào mùa thu. | |
- Các món ăn ở Hà Nội rất ngon và đa dạng. | |
license: apache-2.0 | |
# bkai-foundation-models/vietnamese-bi-encoder | |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. | |
We train the model on a merged training dataset that consists of: | |
- MS Macro (translated into Vietnamese) | |
- SQuAD v2 (translated into Vietnamese) | |
- 80% of the training set from the Legal Text Retrieval Zalo 2021 challenge | |
We use [phobert-base-v2](https://github.com/VinAIResearch/PhoBERT) as the pre-trained backbone. | |
Here are the results on the remaining 20% of the training set from the Legal Text Retrieval Zalo 2021 challenge: | |
| Pretrained Model | Training Datasets | Acc@1 | Acc@10 | Acc@100 | Pre@10 | MRR@10 | | |
|-------------------------------|---------------------------------------|:------------:|:-------------:|:--------------:|:-------------:|:-------------:| | |
| [Vietnamese-SBERT](https://huggingface.co/keepitreal/vietnamese-sbert) | - | 32.34 | 52.97 | 89.84 | 7.05 | 45.30 | | |
| PhoBERT-base-v2 | MSMACRO | 47.81 | 77.19 | 92.34 | 7.72 | 58.37 | | |
| PhoBERT-base-v2 | MSMACRO + SQuADv2.0 + 80% Zalo | 73.28 | 93.59 | 98.85 | 9.36 | 80.73 | | |
<!--- Describe your model here --> | |
## Usage (Sentence-Transformers) | |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: | |
``` | |
pip install -U sentence-transformers | |
``` | |
Then you can use the model like this: | |
```python | |
from sentence_transformers import SentenceTransformer | |
# INPUT TEXT MUST BE ALREADY WORD-SEGMENTED! | |
sentences = ["Cô ấy là một người vui_tính .", "Cô ấy cười nói suốt cả ngày ."] | |
model = SentenceTransformer('bkai-foundation-models/vietnamese-bi-encoder') | |
embeddings = model.encode(sentences) | |
print(embeddings) | |
``` | |
## Usage (Widget HuggingFace) | |
The widget use custom pipeline on top of the default pipeline by adding additional word segmenter before PhobertTokenizer. So you do not need to segment words before using the API: | |
An example could be seen in Hosted inference API. | |
## Usage (HuggingFace Transformers) | |
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. | |
```python | |
from transformers import AutoTokenizer, AutoModel | |
import torch | |
#Mean Pooling - Take attention mask into account for correct averaging | |
def mean_pooling(model_output, attention_mask): | |
token_embeddings = model_output[0] #First element of model_output contains all token embeddings | |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() | |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) | |
# Sentences we want sentence embeddings, we could use pyvi, underthesea, RDRSegment to segment words | |
sentences = ['Cô ấy là một người vui_tính .', 'Cô ấy cười nói suốt cả ngày .'] | |
# Load model from HuggingFace Hub | |
tokenizer = AutoTokenizer.from_pretrained('bkai-foundation-models/vietnamese-bi-encoder') | |
model = AutoModel.from_pretrained('bkai-foundation-models/vietnamese-bi-encoder') | |
# Tokenize sentences | |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') | |
# Compute token embeddings | |
with torch.no_grad(): | |
model_output = model(**encoded_input) | |
# Perform pooling. In this case, mean pooling. | |
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) | |
print("Sentence embeddings:") | |
print(sentence_embeddings) | |
``` | |
## Training | |
The model was trained with the parameters: | |
**DataLoader**: | |
`torch.utils.data.dataloader.DataLoader` of length 17584 with parameters: | |
``` | |
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} | |
``` | |
**Loss**: | |
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: | |
``` | |
{'scale': 20.0, 'similarity_fct': 'cos_sim'} | |
``` | |
Parameters of the fit()-Method: | |
``` | |
{ | |
"epochs": 15, | |
"evaluation_steps": 0, | |
"evaluator": "NoneType", | |
"max_grad_norm": 1, | |
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>", | |
"optimizer_params": { | |
"lr": 2e-05 | |
}, | |
"scheduler": "WarmupLinear", | |
"steps_per_epoch": null, | |
"warmup_steps": 1000, | |
"weight_decay": 0.01 | |
} | |
``` | |
## Full Model Architecture | |
``` | |
SentenceTransformer( | |
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel | |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) | |
) | |
``` | |
### Please cite our manuscript if this dataset is used for your work | |
``` | |
@article{duc2024towards, | |
title={Towards Comprehensive Vietnamese Retrieval-Augmented Generation and Large Language Models}, | |
author={Nguyen Quang Duc, Le Hai Son, Nguyen Duc Nhan, Nguyen Dich Nhat Minh, Le Thanh Huong, Dinh Viet Sang}, | |
journal={arXiv preprint arXiv:2403.01616}, | |
year={2024} | |
} | |
``` |