Files changed (1) hide show
  1. app.py +0 -93
app.py DELETED
@@ -1,93 +0,0 @@
1
- import gradio as gr
2
- import tensorflow as tf
3
- import numpy as np
4
- from PIL import Image
5
- import google.generativeai as genai
6
- import os
7
- import markdown2
8
-
9
- # Load the TensorFlow model
10
- model_path = 'model'
11
- model = tf.saved_model.load(model_path)
12
-
13
- # Configure Gemini API
14
- api_key = os.getenv("GEMINI_API_KEY")
15
- genai.configure(api_key=api_key)
16
-
17
- labels = ['cataract', 'diabetic_retinopathy', 'glaucoma', 'normal']
18
-
19
- def get_disease_detail(disease_name):
20
- if disease_name == "normal":
21
- prompt = (
22
- "Create a text that congratulates having healthy eyes and gives bullet point tips to keep eyes healthy."
23
- )
24
- else:
25
- prompt = (
26
- f"Diagnosis: {disease_name}\n\n"
27
- "What is it?\n(Description about {disease_name})\n\n"
28
- "What causes it?\n(Explain what causes {disease_name})\n\n"
29
- "Suggestion\n(Suggestion to user)\n\n"
30
- "Reminder: Always seek professional help, such as a doctor."
31
- )
32
- try:
33
- response = genai.GenerativeModel("gemini-1.5-flash").generate_content(prompt)
34
- return markdown2.markdown(response.text.strip())
35
- except Exception as e:
36
- return f"Error: {e}"
37
-
38
- def predict_image(image):
39
- image_resized = image.resize((224, 224))
40
- image_array = np.array(image_resized).astype(np.float32) / 255.0
41
- image_array = np.expand_dims(image_array, axis=0)
42
-
43
- predictions = model.signatures['serving_default'](tf.convert_to_tensor(image_array, dtype=tf.float32))['output_0']
44
-
45
- # Highest prediction
46
- top_index = np.argmax(predictions.numpy(), axis=1)[0]
47
- top_label = labels[top_index]
48
- top_probability = predictions.numpy()[0][top_index]
49
-
50
- explanation = get_disease_detail(top_label)
51
-
52
- return {top_label: top_probability}, explanation
53
-
54
- # Example images
55
- example_images = [
56
- ["exp_eye_images/0_right_h.png"],
57
- ["exp_eye_images/03fd50da928d_dr.png"],
58
- ["exp_eye_images/108_right_h.png"],
59
- ["exp_eye_images/1062_right_c.png"],
60
- ["exp_eye_images/1084_right_c.png"],
61
- ["exp_eye_images/image_1002_g.jpg"]
62
- ]
63
-
64
- # Custom CSS for HTML height
65
- css = """
66
- .scrollable-html {
67
- height: 206px;
68
- overflow-y: auto;
69
- border: 1px solid #ccc;
70
- padding: 10px;
71
- box-sizing: border-box;
72
- }
73
- """
74
-
75
- # Gradio Interface
76
- interface = gr.Interface(
77
- fn=predict_image,
78
- inputs=gr.Image(type="pil"),
79
- outputs=[
80
- gr.Label(num_top_classes=1, label="Prediction"),
81
- gr.HTML(label="Explanation", elem_classes=["scrollable-html"])
82
- ],
83
- examples=example_images,
84
- title="Eye Diseases Classifier",
85
- description=(
86
- "Upload an image of an eye fundus, and the model will predict it.\n\n"
87
- "**Disclaimer:** This model is intended as a form of learning process in the field of health-related machine learning and was trained with a limited amount and variety of data with a total of about 4000 data, so the prediction results may not always be correct. There is still a lot of room for improvisation on this model in the future."
88
- ),
89
- allow_flagging="never",
90
- css=css
91
- )
92
-
93
- interface.launch(share=True)