File size: 22,040 Bytes
4e25610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285b200
 
4e25610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
708f019
 
 
 
 
 
 
285b200
 
708f019
 
 
4e25610
 
 
 
 
 
708f019
4e25610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285b200
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e25610
 
285b200
4e25610
 
86af8b6
4e25610
 
 
 
 
 
 
 
 
 
 
 
 
708f019
 
4e25610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import numpy as np
from wordcloud import WordCloud
from collections import Counter, defaultdict
import re
import json
import csv
import io
import tempfile
from datetime import datetime
import logging
from functools import lru_cache
from dataclasses import dataclass
from typing import List, Dict, Optional, Tuple
import nltk
from nltk.corpus import stopwords
import langdetect
import pandas as pd

# Configuration
@dataclass
class Config:
    MAX_HISTORY_SIZE: int = 500
    BATCH_SIZE_LIMIT: int = 30
    MAX_TEXT_LENGTH: int = 512
    CACHE_SIZE: int = 64
    
    # Supported languages and models
    SUPPORTED_LANGUAGES = {
        'auto': 'Auto Detect',
        'en': 'English',
        'zh': 'Chinese',
        'es': 'Spanish',
        'fr': 'French',
        'de': 'German',
        'sv': 'Swedish'
    }
    
    MODELS = {
        'en': "cardiffnlp/twitter-roberta-base-sentiment-latest",
        'multilingual': "cardiffnlp/twitter-xlm-roberta-base-sentiment"
    }
    
    # Color themes
    THEMES = {
        'default': {'pos': '#4CAF50', 'neg': '#F44336', 'neu': '#FF9800'},
        'ocean': {'pos': '#0077BE', 'neg': '#FF6B35', 'neu': '#00BCD4'},
        'dark': {'pos': '#66BB6A', 'neg': '#EF5350', 'neu': '#FFA726'},
        'rainbow': {'pos': '#9C27B0', 'neg': '#E91E63', 'neu': '#FF5722'}
    }

config = Config()

# Logging setup
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Initialize NLTK
try:
    nltk.download('stopwords', quiet=True)
    nltk.download('punkt', quiet=True)
    STOP_WORDS = set(stopwords.words('english'))
except:
    STOP_WORDS = {'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by'}

class ModelManager:
    """Manages multiple language models"""
    def __init__(self):
        self.models = {}
        self.tokenizers = {}
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self._load_default_model()
    
    def _load_default_model(self):
        """Load the default English model"""
        try:
            model_name = config.MODELS['multilingual']  # Use multilingual as default
            self.tokenizers['default'] = AutoTokenizer.from_pretrained(model_name)
            self.models['default'] = AutoModelForSequenceClassification.from_pretrained(model_name)
            self.models['default'].to(self.device)
            logger.info(f"Default model loaded: {model_name}")
        except Exception as e:
            logger.error(f"Failed to load default model: {e}")
            raise
    
    def get_model(self, language='en'):
        """Get model for specific language"""
        if language in ['en', 'auto'] or language not in config.SUPPORTED_LANGUAGES:
            return self.models['default'], self.tokenizers['default']
        return self.models['default'], self.tokenizers['default']  # Use multilingual for all
    
    @staticmethod
    def detect_language(text: str) -> str:
        """Detect text language"""
        try:
            detected = langdetect.detect(text)
            return detected if detected in config.SUPPORTED_LANGUAGES else 'en'
        except:
            return 'en'

model_manager = ModelManager()

class HistoryManager:
    """Manages analysis history"""
    def __init__(self):
        self._history = []
    
    def add_entry(self, entry: Dict):
        self._history.append(entry)
        if len(self._history) > config.MAX_HISTORY_SIZE:
            self._history = self._history[-config.MAX_HISTORY_SIZE:]
    
    def get_history(self) -> List[Dict]:
        return self._history.copy()
    
    def clear(self) -> int:
        count = len(self._history)
        self._history.clear()
        return count
    
    def get_stats(self) -> Dict:
        if not self._history:
            return {}
        
        sentiments = [item['sentiment'] for item in self._history]
        confidences = [item['confidence'] for item in self._history]
        
        return {
            'total_analyses': len(self._history),
            'positive_count': sentiments.count('Positive'),
            'negative_count': sentiments.count('Negative'),
            'avg_confidence': np.mean(confidences),
            'languages_detected': len(set(item.get('language', 'en') for item in self._history))
        }

history_manager = HistoryManager()

class TextProcessor:
    """Enhanced text processing"""
    
    @staticmethod
    @lru_cache(maxsize=config.CACHE_SIZE)
    def clean_text(text: str, remove_punctuation: bool = True, remove_numbers: bool = False) -> str:
        """Clean text with options"""
        text = text.lower().strip()
        
        if remove_numbers:
            text = re.sub(r'\d+', '', text)
        
        if remove_punctuation:
            text = re.sub(r'[^\w\s]', '', text)
        
        words = text.split()
        cleaned_words = [w for w in words if w not in STOP_WORDS and len(w) > 2]
        return ' '.join(cleaned_words)
    
    @staticmethod
    def extract_keywords(text: str, top_k: int = 5) -> List[str]:
        """Extract key words from text"""
        cleaned = TextProcessor.clean_text(text)
        words = cleaned.split()
        word_freq = Counter(words)
        return [word for word, _ in word_freq.most_common(top_k)]

class SentimentAnalyzer:
    """Enhanced sentiment analysis"""
    
    @staticmethod
    def analyze_text(text: str, language: str = 'auto', preprocessing_options: Dict = None) -> Dict:
        """Analyze single text with language support"""
        if not text.strip():
            raise ValueError("Empty text provided")
        
        # Detect language if auto
        if language == 'auto':
            detected_lang = model_manager.detect_language(text)
        else:
            detected_lang = language
        
        # Get appropriate model
        model, tokenizer = model_manager.get_model(detected_lang)
        
        # Preprocessing options
        options = preprocessing_options or {}
        processed_text = text
        if options.get('clean_text', False):
            processed_text = TextProcessor.clean_text(
                text, 
                options.get('remove_punctuation', True),
                options.get('remove_numbers', False)
            )
        
        try:
            # Tokenize and analyze
            inputs = tokenizer(processed_text, return_tensors="pt", padding=True, 
                             truncation=True, max_length=config.MAX_TEXT_LENGTH).to(model_manager.device)
            
            with torch.no_grad():
                outputs = model(**inputs)
                probs = torch.nn.functional.softmax(outputs.logits, dim=-1).cpu().numpy()[0]
                
            # Handle different model outputs
            if len(probs) == 3:  # negative, neutral, positive
                sentiment_idx = np.argmax(probs)
                sentiment_labels = ['Negative', 'Neutral', 'Positive']
                sentiment = sentiment_labels[sentiment_idx]
                confidence = float(probs[sentiment_idx])
                
                result = {
                    'sentiment': sentiment,
                    'confidence': confidence,
                    'neg_prob': float(probs[0]),
                    'neu_prob': float(probs[1]),
                    'pos_prob': float(probs[2]),
                    'has_neutral': True
                }
            else:  # negative, positive
                pred = np.argmax(probs)
                sentiment = "Positive" if pred == 1 else "Negative"
                confidence = float(probs[pred])
                
                result = {
                    'sentiment': sentiment,
                    'confidence': confidence,
                    'neg_prob': float(probs[0]),
                    'pos_prob': float(probs[1]),
                    'neu_prob': 0.0,
                    'has_neutral': False
                }
            
            # Add metadata
            result.update({
                'language': detected_lang,
                'keywords': TextProcessor.extract_keywords(text),
                'word_count': len(text.split()),
                'char_count': len(text)
            })
            
            return result
            
        except Exception as e:
            logger.error(f"Analysis failed: {e}")
            raise

class PlotlyVisualizer:
    """Enhanced visualizations with Plotly"""
    
    @staticmethod
    def create_sentiment_gauge(result: Dict, theme: str = 'default') -> go.Figure:
        """Create an animated sentiment gauge"""
        colors = config.THEMES[theme]
        
        if result['has_neutral']:
            # Three-way gauge
            fig = go.Figure(go.Indicator(
                mode = "gauge+number+delta",
                value = result['pos_prob'] * 100,
                domain = {'x': [0, 1], 'y': [0, 1]},
                title = {'text': f"Sentiment: {result['sentiment']}"},
                delta = {'reference': 50},
                gauge = {
                    'axis': {'range': [None, 100]},
                    'bar': {'color': colors['pos'] if result['sentiment'] == 'Positive' else colors['neg']},
                    'steps': [
                        {'range': [0, 33], 'color': colors['neg']},
                        {'range': [33, 67], 'color': colors['neu']},
                        {'range': [67, 100], 'color': colors['pos']}
                    ],
                    'threshold': {
                        'line': {'color': "red", 'width': 4},
                        'thickness': 0.75,
                        'value': 90
                    }
                }
            ))
        else:
            # Two-way gauge
            fig = go.Figure(go.Indicator(
                mode = "gauge+number",
                value = result['confidence'] * 100,
                domain = {'x': [0, 1], 'y': [0, 1]},
                title = {'text': f"Confidence: {result['sentiment']}"},
                gauge = {
                    'axis': {'range': [None, 100]},
                    'bar': {'color': colors['pos'] if result['sentiment'] == 'Positive' else colors['neg']},
                    'steps': [
                        {'range': [0, 50], 'color': "lightgray"},
                        {'range': [50, 100], 'color': "gray"}
                    ]
                }
            ))
        
        fig.update_layout(height=400, font={'size': 16})
        return fig
    
    @staticmethod
    def create_probability_bars(result: Dict, theme: str = 'default') -> go.Figure:
        """Create probability bar chart"""
        colors = config.THEMES[theme]
        
        if result['has_neutral']:
            labels = ['Negative', 'Neutral', 'Positive']
            values = [result['neg_prob'], result['neu_prob'], result['pos_prob']]
            bar_colors = [colors['neg'], colors['neu'], colors['pos']]
        else:
            labels = ['Negative', 'Positive']
            values = [result['neg_prob'], result['pos_prob']]
            bar_colors = [colors['neg'], colors['pos']]
        
        fig = go.Figure(data=[
            go.Bar(x=labels, y=values, marker_color=bar_colors, text=[f'{v:.3f}' for v in values])
        ])
        
        fig.update_traces(texttemplate='%{text}', textposition='outside')
        fig.update_layout(
            title="Sentiment Probabilities",
            yaxis_title="Probability",
            height=400,
            showlegend=False
        )
        
        return fig
    
    @staticmethod
    def create_history_dashboard(history: List[Dict]) -> go.Figure:
        """Create comprehensive history dashboard"""
        if len(history) < 2:
            return go.Figure()
        
        # Create subplots
        fig = make_subplots(
            rows=2, cols=2,
            subplot_titles=['Sentiment Timeline', 'Confidence Distribution', 
                           'Language Distribution', 'Sentiment Summary'],
            specs=[[{"secondary_y": False}, {"secondary_y": False}],
                   [{"type": "pie"}, {"type": "bar"}]]
        )
        
        # Extract data
        indices = list(range(len(history)))
        pos_probs = [item['pos_prob'] for item in history]
        confidences = [item['confidence'] for item in history]
        sentiments = [item['sentiment'] for item in history]
        languages = [item.get('language', 'en') for item in history]
        
        # Sentiment timeline
        colors = ['#4CAF50' if s == 'Positive' else '#F44336' for s in sentiments]
        fig.add_trace(
            go.Scatter(x=indices, y=pos_probs, mode='lines+markers', 
                      marker=dict(color=colors, size=8),
                      name='Positive Probability'),
            row=1, col=1
        )
        
        # Confidence distribution
        fig.add_trace(
            go.Histogram(x=confidences, nbinsx=10, name='Confidence'),
            row=1, col=2
        )
        
        # Language distribution
        lang_counts = Counter(languages)
        fig.add_trace(
            go.Pie(labels=list(lang_counts.keys()), values=list(lang_counts.values()),
                   name="Languages"),
            row=2, col=1
        )
        
        # Sentiment summary
        sent_counts = Counter(sentiments)
        fig.add_trace(
            go.Bar(x=list(sent_counts.keys()), y=list(sent_counts.values()),
                   marker_color=['#4CAF50' if k == 'Positive' else '#F44336' for k in sent_counts.keys()]),
            row=2, col=2
        )
        
        fig.update_layout(height=800, showlegend=False)
        return fig

# Main application functions
def analyze_single_text(text: str, language: str, theme: str, clean_text: bool, 
                       remove_punct: bool, remove_nums: bool):
    """Enhanced single text analysis"""
    try:
        if not text.strip():
            return "Please enter text", None, None, "No analysis performed"
        
        # Map display names back to language codes
        language_map = {
            'Auto Detect': 'auto',
            'English': 'en',
            'Chinese': 'zh',
            'Spanish': 'es',
            'French': 'fr',
            'German': 'de',
            'Swedish': 'sv'
        }
        language_code = language_map.get(language, 'auto')
        
        preprocessing_options = {
            'clean_text': clean_text,
            'remove_punctuation': remove_punct,
            'remove_numbers': remove_nums
        }
        
        result = SentimentAnalyzer.analyze_text(text, language_code, preprocessing_options)
        
        # Add to history
        history_entry = {
            'text': text[:100] + '...' if len(text) > 100 else text,
            'full_text': text,
            'sentiment': result['sentiment'],
            'confidence': result['confidence'],
            'pos_prob': result['pos_prob'],
            'neg_prob': result['neg_prob'],
            'neu_prob': result.get('neu_prob', 0),
            'language': result['language'],
            'timestamp': datetime.now().isoformat()
        }
        history_manager.add_entry(history_entry)
        
        # Create visualizations
        gauge_fig = PlotlyVisualizer.create_sentiment_gauge(result, theme)
        bars_fig = PlotlyVisualizer.create_probability_bars(result, theme)
        
        # Create info text
        info_text = f"""
**Analysis Results:**
- **Sentiment:** {result['sentiment']} ({result['confidence']:.3f} confidence)
- **Language:** {result['language'].upper()}
- **Keywords:** {', '.join(result['keywords'])}
- **Stats:** {result['word_count']} words, {result['char_count']} characters
        """
        
        return info_text, gauge_fig, bars_fig, "Analysis completed successfully"
        
    except Exception as e:
        logger.error(f"Analysis failed: {e}")
        return f"Error: {str(e)}", None, None, "Analysis failed"

def get_history_stats():
    """Get history statistics"""
    stats = history_manager.get_stats()
    if not stats:
        return "No analysis history available"
    
    return f"""
**History Statistics:**
- Total Analyses: {stats['total_analyses']}
- Positive: {stats['positive_count']} | Negative: {stats['negative_count']}
- Average Confidence: {stats['avg_confidence']:.3f}
- Languages Detected: {stats['languages_detected']}
    """

def plot_history_dashboard():
    """Create history dashboard"""
    history = history_manager.get_history()
    if len(history) < 2:
        return None, "Need at least 2 analyses for dashboard"
    
    fig = PlotlyVisualizer.create_history_dashboard(history)
    return fig, f"Dashboard showing {len(history)} analyses"

def export_history_excel():
    """Export history to Excel"""
    history = history_manager.get_history()
    if not history:
        return None, "No history to export"
    
    try:
        df = pd.DataFrame(history)
        temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx')
        df.to_excel(temp_file.name, index=False)
        return temp_file.name, f"Exported {len(history)} entries to Excel"
    except Exception as e:
        return None, f"Export failed: {str(e)}"

def clear_all_history():
    """Clear analysis history"""
    count = history_manager.clear()
    return f"Cleared {count} entries from history"

# Sample data
SAMPLE_TEXTS = [
    # Auto Detect
    ["The film had its moments, but overall it felt a bit too long and lacked emotional depth."],

    # English
    ["I was completely blown away by the movie — the performances were raw and powerful, and the story stayed with me long after the credits rolled."],

    # Chinese
    ["这部电影节奏拖沓,剧情老套,完全没有让我产生任何共鸣,是一次失望的观影体验。"],

    # Spanish
    ["Una obra maestra del cine contemporáneo, con actuaciones sobresalientes, un guion bien escrito y una dirección impecable."],

    # French
    ["Je m'attendais à beaucoup mieux. Le scénario était confus, les dialogues ennuyeux, et je me suis presque endormi au milieu du film."],

    # German
    ["Der Film war ein emotionales Erlebnis mit großartigen Bildern, einem mitreißenden Soundtrack und einer Geschichte, die zum Nachdenken anregt."],

    # Swedish
    ["Filmen var en besvikelse – tråkig handling, överdrivet skådespeleri och ett slut som inte gav något avslut alls."]
]


# Gradio Interface
with gr.Blocks(theme=gr.themes.Soft(), title="Advanced Sentiment Analyzer") as demo:
    gr.Markdown("# 🎭 Multilingual Sentiment Analyzer")
    gr.Markdown("Analyze sentiment with multiple languages, themes, and advanced visualizations")
    
    with gr.Tab("📝 Single Analysis"):
        with gr.Row():
            with gr.Column(scale=2):
                text_input = gr.Textbox(
                    label="Text to Analyze",
                    placeholder="Enter your text here... (supports multiple languages)",
                    lines=4
                )
                
                with gr.Row():
                    language_select = gr.Dropdown(
                        choices=['Auto Detect', 'English', 'Chinese', 'Spanish', 'French', 'German'],
                        value='Auto Detect',
                        label="Language"
                    )
                    theme_select = gr.Dropdown(
                        choices=list(config.THEMES.keys()),
                        value='default',
                        label="Theme"
                    )
                
                with gr.Row():
                    clean_text = gr.Checkbox(label="Clean Text", value=False)
                    remove_punct = gr.Checkbox(label="Remove Punctuation", value=True)
                    remove_nums = gr.Checkbox(label="Remove Numbers", value=False)
                
                analyze_btn = gr.Button("🔍 Analyze", variant="primary", size="lg")
                
                gr.Examples(
                    examples=SAMPLE_TEXTS,
                    inputs=text_input,
                    label="Sample Texts (Multiple Languages)"
                )
            
            with gr.Column(scale=1):
                result_info = gr.Markdown("Enter text and click Analyze")
        
        with gr.Row():
            gauge_plot = gr.Plot(label="Sentiment Gauge")
            bars_plot = gr.Plot(label="Probability Distribution")
        
        status_output = gr.Textbox(label="Status", interactive=False)
    
    with gr.Tab("📊 History & Analytics"):
        with gr.Row():
            stats_btn = gr.Button("📈 Get Statistics")
            dashboard_btn = gr.Button("📊 View Dashboard")
            clear_btn = gr.Button("🗑️ Clear History", variant="stop")
        
        with gr.Row():
            export_excel_btn = gr.Button("📁 Export Excel")
        
        stats_output = gr.Markdown("Click 'Get Statistics' to view analysis history")
        dashboard_plot = gr.Plot(label="Analytics Dashboard")
        excel_file = gr.File(label="Download Excel Report")
        history_status = gr.Textbox(label="Status", interactive=False)
    
    # Event handlers
    analyze_btn.click(
        analyze_single_text,
        inputs=[text_input, language_select, theme_select, clean_text, remove_punct, remove_nums],
        outputs=[result_info, gauge_plot, bars_plot, status_output]
    )
    
    stats_btn.click(
        get_history_stats,
        outputs=stats_output
    )
    
    dashboard_btn.click(
        plot_history_dashboard,
        outputs=[dashboard_plot, history_status]
    )
    
    export_excel_btn.click(
        export_history_excel,
        outputs=[excel_file, history_status]
    )
    
    clear_btn.click(
        clear_all_history,
        outputs=history_status
    )

if __name__ == "__main__":
    demo.launch(share=True)