File size: 20,080 Bytes
066078a 68b6287 066078a 68b6287 066078a ae4d524 066078a 915cc4a e1b73eb 3b5b908 3db41eb 3b5b908 db085d8 50062e1 64fabac 3b5b908 db085d8 50062e1 64fabac 3b5b908 a0857de 3b5b908 a0857de e1b73eb 2711426 a0857de 066078a 68b6287 e9bba84 3122dc7 e9bba84 066078a 3d0eebe 066078a b5433d0 066078a 3d0eebe 8044348 bd01733 8aa1677 b5433d0 8aa1677 b5433d0 f99f68e 8aa1677 066078a 8aa1677 3d0eebe f99f68e 066078a 8aa1677 8044348 3d0eebe 066078a 8aa1677 066078a 3d0eebe 066078a 8aa1677 066078a 8aa1677 b5433d0 8aa1677 b5433d0 8aa1677 b5433d0 8aa1677 b5433d0 8aa1677 b5433d0 8aa1677 b5433d0 8aa1677 066078a 3d0eebe 066078a f99f68e 8aa1677 f99f68e 3d0eebe 066078a 8aa1677 066078a 3d0eebe f99f68e 066078a f99f68e 066078a f99f68e 8aa1677 3d0eebe 066078a 8aa1677 f99f68e 066078a 3d0eebe 8aa1677 066078a cc347a1 066078a e9bba84 066078a 1dcc8f3 b4f8210 8f5c308 b4f8210 3122dc7 b4f8210 066078a b4f8210 3b5b908 d8e4d4f 066078a 8aa1677 066078a 08f838e 066078a 08f838e 066078a 08f838e 066078a 08f838e 066078a 8aa1677 474e45e 08f838e 066078a 9020877 25d425a 066078a 3122dc7 066078a 60ca3d8 066078a ca2e9f4 066078a f97b93e 71b00ff 066078a e9bba84 066078a 8aa1677 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
import os
import numpy as np
import gradio as gr
import cv2
import tensorflow as tf
import keras
from keras.models import Model
from keras.preprocessing import image
from huggingface_hub import hf_hub_download
import pandas as pd
from PIL import Image
import plotly.express as px
import time
theme = gr.themes.Soft(
primary_hue="purple",
secondary_hue="yellow",
text_size="sm",
)
css = """
#warning {background-color: #FFCCCB}
/* Surbrillance pour "Malin" (rouge #F54927) */
.highlight.malin {
background-color: #F54927;
color: white;
font-weight: bold;
padding: 10px 6px;
border-radius: 4px;
font-size:24px;
}
#.highlight.malin h2.output-class {
# font-size: 24px !important; /* Cible le <h2> à l'intérieur du span */
#}
/* Surbrillance pour "Bénin" (vert #34EA3A) */
.highlight.benin {
background-color: #34EA3A;
color: black;
font-weight: bold;
padding: 3px 6px;
border-radius: 4px;
font-size:24px;
}
#.highlight.benin h2.output-class {
# font-size: 24px !important; /* Optionnel : si tu veux aussi appliquer à "Bénin" */
#}
/* Style pour le Diagnostic global */
.diagnostic-global h2.output-class {
font-size: 24px !important;
}
/* Style pour l'explication */
.feedback h2.output-class {
font-size: 16px !important;
}
"""
# Désactiver GPU et logs TensorFlow
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
tf.config.set_visible_devices([], 'GPU')
# ---- Configuration ----
CLASS_NAMES = ['akiec', 'bcc', 'bkl', 'df', 'nv', 'vasc', 'mel']
label_to_index = {name: i for i, name in enumerate(CLASS_NAMES)}
diagnosis_map = {
'akiec': 'Bénin', 'bcc': 'Malin', 'bkl': 'Bénin', 'df': 'Bénin',
'nv': 'Bénin', 'vasc': 'Bénin', 'mel': 'Malin'
}
description = {
"akiec": "Bénin : AKIEC ou kératoses solaires sont des excroissances précancéreuses provoquées par l'exposition solaire prolongée. Le risque de progression d'une Kératose Actinique vers un carcinome épidermoïde (cancer de la peau non mélanome) existe mais reste modéré",
"bcc": "Malin : BCC ou carcinome basocellulaire est un type de cancer cutané. C’est le cancer de la peau le plus fréquent. Il se manifeste par la formation d'une masse, d'un bouton ou d'une lésion sur la couche externe de la peau.",
"bkl": "Bénin : BKL ou kératose séborrhéique se présente sous la forme d’une lésion pigmentée, en relief, verruqueuse (qui ressemble à une verrue), souvent croûteuse, de plus ou moins grande taille.",
"df": "Bénin : DF ou dermatofibrome est une lésion papuleuse ou nodulaire ferme, le plus souvent de petite taille, de couleur rouge marron, de nature fibrohistiocytaire.",
"nv": "Bénin : NV (Nevus) ou le grain de beauté, couramment appelés nevus mélanocytaires représentent une accumulation localisée de mélanocytes dans la peau",
"vasc": "Bénin : VASC ou "lésion vasculaire" se traduit par la survenue d’anomalies visibles en surface de la peau et d’aspect variable : rougeurs, taches planes ou en relief, capillaires sanguins apparents",
"mel": "Malin : MEL ou Mélanome est un nodule noir ou couleur « peau » présent sur n'importe quelle partie de la peau. Sa consistance est ferme et le nodule peut s'ulcérer, se couvrir d'une croûte, suinter ou saigner."
}
# ---- Chargement des modèles ----
def load_models_safely():
models = {}
try:
print("📥 Téléchargement ResNet50...")
resnet_path = hf_hub_download(repo_id="ericjedha/resnet50", filename="Resnet50.keras")
models['resnet50'] = keras.saving.load_model(resnet_path, compile=False)
print("✅ ResNet50 chargé")
except Exception as e:
models['resnet50'] = None
try:
print("📥 Téléchargement DenseNet201...")
densenet_path = hf_hub_download(repo_id="ericjedha/densenet201", filename="Densenet201.keras")
models['densenet201'] = keras.saving.load_model(densenet_path, compile=False)
print("✅ DenseNet201 chargé")
except Exception as e:
models['densenet201'] = None
try:
print("📥 Chargement Xception local...")
if os.path.exists("Xception.keras"):
models['xception'] = keras.saving.load_model("Xception.keras", compile=False)
print("✅ Xception chargé")
else:
models['xception'] = None
except Exception as e:
models['xception'] = None
loaded = {k: v for k, v in models.items() if v is not None}
if not loaded:
raise Exception("❌ Aucun modèle n'a pu être chargé!")
print(f"🎯 Modèles chargés: {list(loaded.keys())}")
return models
try:
models_dict = load_models_safely()
model_resnet50 = models_dict.get('resnet50')
model_densenet = models_dict.get('densenet201')
model_xcept = models_dict.get('xception')
except Exception as e:
print(f"🚨 ERREUR CRITIQUE: {e}")
model_resnet50 = model_densenet = model_xcept = None
# ---- Préprocesseurs ----
from tensorflow.keras.applications.xception import preprocess_input as preprocess_xception
from tensorflow.keras.applications.resnet50 import preprocess_input as preprocess_resnet
from tensorflow.keras.applications.densenet import preprocess_input as preprocess_densenet
# ---- Utils ----
def _renorm_safe(p: np.ndarray) -> np.ndarray:
p = np.clip(p, 0.0, None) # Évite les valeurs négatives
s = np.sum(p)
if s <= 0:
return np.ones_like(p, dtype=np.float32) / len(p)
normalized = p / s
return normalized / np.sum(normalized) if np.sum(normalized) > 1.0001 else normalized
def get_primary_input_name(model):
if isinstance(model.inputs, list) and len(model.inputs) > 0:
return model.inputs[0].name.split(':')[0]
return "input_1"
def _update_progress(progress, value, desc=""):
"""
Met à jour la barre de progression.
"""
if progress is not None:
progress(value / 100.0, desc=desc)
# ---- PREDICT SINGLE ----
def predict_single(img_input, weights=(0.45, 0.25, 0.30), normalize=True):
if isinstance(img_input, str):
pil_img = Image.open(img_input).convert("RGB")
elif isinstance(img_input, Image.Image):
pil_img = img_input.convert("RGB")
else:
raise ValueError("img_input doit être un chemin (str) ou une image PIL")
preds = {}
if model_xcept is not None:
img_x = np.expand_dims(preprocess_xception(np.array(pil_img.resize((299, 299), resample=Image.BILINEAR))), axis=0)
preds['xception'] = model_xcept.predict(img_x, verbose=0)[0]
if model_resnet50 is not None:
img_r = np.expand_dims(preprocess_resnet(np.array(pil_img.resize((224, 224), resample=Image.BILINEAR))), axis=0)
preds['resnet50'] = model_resnet50.predict(img_r, verbose=0)[0]
if model_densenet is not None:
img_d = np.expand_dims(preprocess_densenet(np.array(pil_img.resize((224, 224), resample=Image.BILINEAR))), axis=0)
preds['densenet201'] = model_densenet.predict(img_d, verbose=0)[0]
ensemble = np.zeros(len(CLASS_NAMES), dtype=np.float32)
if 'xception' in preds: ensemble += weights[0] * preds['xception']
if 'resnet50' in preds: ensemble += weights[1] * preds['resnet50']
if 'densenet201' in preds: ensemble += weights[2] * preds['densenet201']
if 'densenet201' in preds:
mel_idx = label_to_index['mel']
ensemble[mel_idx] = 0.5 * ensemble[mel_idx] + 0.5 * preds['densenet201'][mel_idx]
if normalize:
ensemble = _renorm_safe(ensemble)
preds['ensemble'] = ensemble
return preds
# ---- Helpers Grad-CAM ----
LAST_CONV_LAYERS = {
"xception": "block14_sepconv2_act",
"resnet50": "conv5_block3_out",
"densenet201": "conv5_block32_concat"
}
def find_last_dense_layer(model):
for layer in reversed(model.layers):
if isinstance(layer, keras.layers.Dense):
return layer
raise ValueError("Aucune couche Dense trouvée dans le modèle.")
# ---- GRAD-CAM AVEC PROGRESSION OPTIMISÉE ----
def make_gradcam(image_pil, model, last_conv_layer_name, class_index, progress=None):
"""
Grad-CAM avec progression fluide grâce aux micro-pauses
"""
if model is None:
return np.array(image_pil)
try:
steps = [
(5, "🔄 Initialisation..."),
(10, "🖼️ Analyse de l'image..."),
(15, "⚙️ Configuration du preprocesseur..."),
(20, "📐 Redimensionnement image..."),
(25, "🧠 Configuration du modèle..."),
(30, "🔗 Création du gradient model..."),
(35, "⚡ Préparation du calcul..."),
(40, "🔥 Forward pass..."),
(45, "📊 Calcul des activations..."),
(50, "🎯 Extraction classe cible..."),
(55, "⚡ Calcul du gradient..."),
(60, "📈 Traitement des gradients..."),
(70, "📊 Pooling des gradients..."),
(75, "🎨 Construction heatmap..."),
(80, "🌡️ Normalisation heatmap..."),
(85, "🎯 Application colormap..."),
(90, "🖼️ Redimensionnement final..."),
(95, "✨ Superposition images..."),
(100, "✅ Terminé !")
]
step = 0
def next_step():
nonlocal step
if step < len(steps):
val, desc = steps[step]
_update_progress(progress, val, desc)
time.sleep(0.02) # Micro-pause pour permettre la mise à jour
step += 1
next_step() # 5% - Initialisation
# Détermination de la taille d'entrée et du preprocesseur
input_size = model.input_shape[1:3]
if 'xception' in model.name.lower():
preprocessor = preprocess_xception
elif 'resnet50' in model.name.lower():
preprocessor = preprocess_resnet
elif 'densenet' in model.name.lower():
preprocessor = preprocess_densenet
else:
preprocessor = preprocess_densenet
next_step() # 10% - Analyse image
next_step() # 15% - Config preprocesseur
# Préparation de l'image
img_np = np.array(image_pil.convert("RGB"))
img_resized = cv2.resize(img_np, input_size)
img_array_preprocessed = preprocessor(np.expand_dims(img_resized, axis=0))
next_step() # 20% - Redimensionnement
next_step() # 25% - Config modèle
# Configuration du modèle pour Grad-CAM
try:
conv_layer = model.get_layer(last_conv_layer_name)
except ValueError:
return img_resized
grad_model = Model(model.inputs, [conv_layer.output, model.output])
input_name = get_primary_input_name(model)
input_for_model = {input_name: img_array_preprocessed}
next_step() # 30% - Gradient model
next_step() # 35% - Préparation calcul
next_step() # 40% - Forward pass
# Le calcul critique avec étapes intermédiaires
with tf.GradientTape() as tape:
next_step() # 45% - Calcul activations
last_conv_layer_output, preds = grad_model(input_for_model, training=False)
next_step() # 50% - Extraction classe
if isinstance(preds, list):
preds = preds[0]
class_channel = preds[:, int(class_index)]
next_step() # 55% - Calcul gradient
grads = tape.gradient(class_channel, last_conv_layer_output)
if grads is None:
return img_resized
next_step() # 60% - Traitement gradients
next_step() # 70% - Pooling
# Pooling des gradients
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
last_conv_layer_output = last_conv_layer_output[0]
next_step() # 75% - Construction heatmap
# Construction de la heatmap
heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis]
heatmap = tf.squeeze(heatmap)
heatmap = tf.maximum(heatmap, 0)
max_val = tf.math.reduce_max(heatmap)
if max_val == 0:
heatmap = tf.ones_like(heatmap) * 0.5
else:
heatmap = heatmap / max_val
next_step() # 80% - Normalisation
next_step() # 85% - Colormap
# Conversion et application du colormap
heatmap_np = heatmap.numpy()
heatmap_np = np.clip(heatmap_np.astype(np.float32), 0, 1)
heatmap_resized = cv2.resize(heatmap_np, (img_resized.shape[1], img_resized.shape[0]))
heatmap_uint8 = np.uint8(255 * heatmap_resized)
heatmap_colored = cv2.applyColorMap(heatmap_uint8, cv2.COLORMAP_JET)
next_step() # 90% - Redimensionnement
next_step() # 95% - Superposition
# Superposition des images
img_bgr = cv2.cvtColor(img_resized, cv2.COLOR_RGB2BGR)
superimposed_img = cv2.addWeighted(img_bgr, 0.6, heatmap_colored, 0.4, 0)
next_step() # 100% - Terminé
return cv2.cvtColor(superimposed_img, cv2.COLOR_BGR2RGB)
except Exception as e:
import traceback
traceback.print_exc()
_update_progress(progress, 100, "❌ Erreur")
return np.array(image_pil)
# ---- GESTION ASYNCHRONE / ÉTAT ----
current_image = None
current_predictions = None
# ---- Fonctions pour l'UI Gradio ----
def quick_predict_ui(image_pil):
global current_image, current_predictions
if image_pil is None:
return "Veuillez uploader une image.", None, None, "❌ Erreur: Aucune image fournie."
try:
current_image = image_pil
all_preds = predict_single(image_pil)
current_predictions = all_preds
ensemble_probs = all_preds["ensemble"]
top_class_idx = int(np.argmax(ensemble_probs))
top_class_name = CLASS_NAMES[top_class_idx]
global_diag = diagnosis_map[top_class_name]
for top in description:
if top == top_class_name:
desc_top = description[top]
confidences = {CLASS_NAMES[i]: float(ensemble_probs[i] * 100) for i in range(len(CLASS_NAMES))}
top_class_pourcent = round(max(confidences.values()), 2)
# Ajoute une classe CSS en fonction du diagnostic
if global_diag == "Malin":
global_diag_html = f'<div style="float:left"><img src="https://huggingface.co/spaces/ericjedha/skin_care/resolve/main/mel.webp" width="150"></div><span style="font-size:20px">Diagnotic Global 💬</span><div class="highlight malin">{global_diag} : {top_class_pourcent} % ▪ {top_class_name.upper()} ▪</div>'
elif global_diag == "Bénin":
global_diag_html = f'<div style="float:left"><img src="https://huggingface.co/spaces/ericjedha/skin_care/resolve/main/non-mel.webp" width="150"></div><span style="font-size:20px">Diagnotic Global 💬</span><div class="highlight benin">{global_diag} : {top_class_pourcent} % ▪ {top_class_name.upper()} ▪</div>'
else:
global_diag_html = global_diag # Pas de surbrillance
df = pd.DataFrame.from_dict(confidences, orient='index', columns=['Probabilité']).reset_index().rename(columns={'index': 'Classe'})
df = df.sort_values(by='Probabilité', ascending=False)
df['Pourcentage'] = df['Probabilité'].apply(lambda x: f"{x:.1f}%")
fig = px.bar(df,
x="Classe",
y="Probabilité",
color="Probabilité",
color_continuous_scale=px.colors.sequential.Viridis,
title="Probabilités par classe",
text="Pourcentage")
text_positions = []
for val in df['Probabilité']:
if val <= 10:
text_positions.append("outside")
else:
text_positions.append("inside")
fig.update_traces(textposition=text_positions)
fig.update_layout(xaxis_title="", yaxis_title="Probabilité (%)", height=400)
return f"{global_diag_html}", desc_top, fig, "✅ Analyse terminée. Prêt pour Grad-CAM."
except Exception as e:
return f"Erreur: {e}", None, "❌ Erreur lors de l'analyse."
def generate_gradcam_ui(progress=gr.Progress()):
global current_image, current_predictions
if current_image is None or current_predictions is None:
return None, "❌ Aucun résultat précédent — lance d'abord l'analyse rapide."
try:
ensemble_probs = current_predictions["ensemble"]
top_class_idx = int(np.argmax(ensemble_probs))
# Sélection des modèles disponibles
candidates = []
if model_xcept is not None:
candidates.append(("xception", model_xcept, current_predictions["xception"][top_class_idx]))
if model_resnet50 is not None:
candidates.append(("resnet50", model_resnet50, current_predictions["resnet50"][top_class_idx]))
if model_densenet is not None:
candidates.append(("densenet201", model_densenet, current_predictions["densenet201"][top_class_idx]))
if not candidates:
return None, "❌ Aucun modèle disponible pour Grad-CAM."
# Choix du meilleur modèle
explainer_model_name, explainer_model, conf = max(candidates, key=lambda t: t[2])
explainer_layer = LAST_CONV_LAYERS.get(explainer_model_name)
# Génération Grad-CAM avec progression fluide
gradcam_img = make_gradcam(
current_image,
explainer_model,
explainer_layer,
class_index=top_class_idx,
progress=progress
)
return gradcam_img, f"✅ Grad-CAM généré avec {explainer_model_name} (confiance: {conf:.1%})"
except Exception as e:
import traceback
traceback.print_exc()
return None, f"❌ Erreur: {e}"
# ---- INTERFACE GRADIO ----
example_paths = ["ISIC_0024627.jpg", "ISIC_0025539.jpg", "ISIC_0031410.jpg"]
with gr.Blocks(theme=theme, title="Analyse de lésions", css=css) as demo:
gr.Markdown("# 🔬 Skin Care : analyse de lésions cutanées")
models_status = []
if model_resnet50: models_status.append("✅ ResNet50")
if model_densenet: models_status.append("✅ DenseNet201")
if model_xcept: models_status.append("✅ Xception")
gr.Markdown(f"**Avertissement 🚨:** cette application est un projet d'étudiant et ne doit être utilisé qu'à titre informatif. Seul votre médecin est habilité à vous donner un diagnostic.")
gr.Markdown(f"**Modèles chargés:** {', '.join(models_status) if models_status else 'AUCUN'}")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(type="pil", label="📸 Uploader une image")
with gr.Row():
quick_btn = gr.Button("Étape 1️⃣ Analyse Rapide", variant="primary")
gradcam_btn = gr.Button("Étape 2️⃣ Carte de chaleur", variant="secondary")
gr.Examples(examples=example_paths, inputs=input_image)
with gr.Column(scale=2):
output_label = gr.HTML(value='<h2 class="output-class">Veuillez uploader une image.</h2>', elem_classes="diagnostic-global")
output_text = gr.Label(label=" Explication", elem_classes="feedback")
output_plot = gr.Plot(label="📈 Probabilités")
output_gradcam = gr.Image(label="🔍 Visualisation Grad-CAM")
output_status = gr.Textbox(label="Statut", interactive=False)
quick_btn.click(fn=quick_predict_ui, inputs=input_image, outputs=[output_label, output_text, output_plot, output_status])
gradcam_btn.click(fn=generate_gradcam_ui, inputs=[], outputs=[output_gradcam, output_status])
if __name__ == "__main__":
if all(m is None for m in [model_resnet50, model_densenet, model_xcept]):
print("\n\n🚨 ATTENTION: Aucun modèle n'a été chargé. L'application ne fonctionnera pas.\n\n")
demo.launch() |