Spaces:
Running
Running
File size: 3,316 Bytes
55bf388 4defacc ed95978 55bf388 37c7fb5 55bf388 4defacc a202342 f5a907f a202342 4defacc ed95978 37c7fb5 ed95978 37c7fb5 ed95978 4defacc ed95978 4defacc ed95978 55bf388 37c7fb5 55bf388 ed95978 55bf388 37c7fb5 55bf388 37c7fb5 55bf388 37c7fb5 55bf388 ed95978 37c7fb5 55bf388 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import os
import gradio as gr
import torchaudio
from typing import Tuple, Optional
import soundfile as sf
from s2st_inference import s2st_inference
from utils import download_model
DESCRIPTION = r"**Speech-to-Speech Translation from Spanish to English**"
SAMPLE_RATE = 16000
MAX_INPUT_LENGTH = 60 # seconds
S2UT_TAG = 'espnet/jiyang_tang_cvss-c_es-en_discrete_unit'
S2UT_DIR = 'model'
VOCODER_TAG = 'espnet/cvss-c_en_wavegan_hubert_vocoder'
VOCODER_DIR = 'vocoder'
NGPU = 0
BEAM_SIZE = 1
class App:
def __init__(self):
# Download models
os.makedirs(S2UT_DIR, exist_ok=True)
os.makedirs(VOCODER_DIR, exist_ok=True)
self.s2ut_path = download_model(S2UT_TAG, S2UT_DIR)
self.vocoder_path = download_model(VOCODER_TAG, VOCODER_DIR)
def s2st(
self,
input_audio: Optional[str],
):
orig_wav, orig_sr = torchaudio.load(input_audio)
wav = torchaudio.functional.resample(orig_wav, orig_freq=orig_sr, new_freq=SAMPLE_RATE)
max_length = int(MAX_INPUT_LENGTH * SAMPLE_RATE)
if wav.shape[1] > max_length:
wav = wav[:, :max_length]
gr.Warning(f"Input audio is too long. Truncated to {MAX_INPUT_LENGTH} seconds.")
wav = wav[0] # mono
# Temporary change cwd to model dir so that it loads correctly
cwd = os.getcwd()
os.chdir(self.s2ut_path)
# Translate wav
out_wav = s2st_inference(
wav,
train_config=os.path.join(
self.s2ut_path,
'exp',
's2st_train_s2st_discrete_unit_raw_fbank_es_en',
'config.yaml',
),
model_file=os.path.join(
self.s2ut_path,
'exp',
's2st_train_s2st_discrete_unit_raw_fbank_es_en',
'500epoch.pth',
),
vocoder_file=os.path.join(
self.vocoder_path,
'checkpoint-450000steps.pkl',
),
vocoder_config=os.path.join(
self.vocoder_path,
'config.yml',
),
ngpu=NGPU,
beam_size=BEAM_SIZE,
)
# Restore working directory
os.chdir(cwd)
# Save result
output_path = 'output.wav'
sf.write(
output_path,
out_wav,
16000,
"PCM_16",
)
return output_path
def main():
app = App()
with gr.Blocks() as demo:
gr.Markdown(DESCRIPTION)
with gr.Group():
input_audio = gr.Audio(
label="Input speech",
type="filepath",
sources=["upload", "microphone"],
format='wav',
streaming=False,
visible=True,
)
btn = gr.Button("Translate")
output_audio = gr.Audio(
label="Translated speech",
autoplay=False,
streaming=False,
type="numpy",
)
btn.click(
fn=app.s2st,
inputs=[input_audio],
outputs=[output_audio],
api_name="run",
)
demo.queue(max_size=50).launch()
if __name__ == '__main__':
main()
|