tjysdsg's picture
Simplify UI and update gradio
37c7fb5
raw
history blame
3.32 kB
import os
import gradio as gr
import torchaudio
from typing import Tuple, Optional
import soundfile as sf
from s2st_inference import s2st_inference
from utils import download_model
DESCRIPTION = r"**Speech-to-Speech Translation from Spanish to English**"
SAMPLE_RATE = 16000
MAX_INPUT_LENGTH = 60 # seconds
S2UT_TAG = 'espnet/jiyang_tang_cvss-c_es-en_discrete_unit'
S2UT_DIR = 'model'
VOCODER_TAG = 'espnet/cvss-c_en_wavegan_hubert_vocoder'
VOCODER_DIR = 'vocoder'
NGPU = 0
BEAM_SIZE = 1
class App:
def __init__(self):
# Download models
os.makedirs(S2UT_DIR, exist_ok=True)
os.makedirs(VOCODER_DIR, exist_ok=True)
self.s2ut_path = download_model(S2UT_TAG, S2UT_DIR)
self.vocoder_path = download_model(VOCODER_TAG, VOCODER_DIR)
def s2st(
self,
input_audio: Optional[str],
):
orig_wav, orig_sr = torchaudio.load(input_audio)
wav = torchaudio.functional.resample(orig_wav, orig_freq=orig_sr, new_freq=SAMPLE_RATE)
max_length = int(MAX_INPUT_LENGTH * SAMPLE_RATE)
if wav.shape[1] > max_length:
wav = wav[:, :max_length]
gr.Warning(f"Input audio is too long. Truncated to {MAX_INPUT_LENGTH} seconds.")
wav = wav[0] # mono
# Temporary change cwd to model dir so that it loads correctly
cwd = os.getcwd()
os.chdir(self.s2ut_path)
# Translate wav
out_wav = s2st_inference(
wav,
train_config=os.path.join(
self.s2ut_path,
'exp',
's2st_train_s2st_discrete_unit_raw_fbank_es_en',
'config.yaml',
),
model_file=os.path.join(
self.s2ut_path,
'exp',
's2st_train_s2st_discrete_unit_raw_fbank_es_en',
'500epoch.pth',
),
vocoder_file=os.path.join(
self.vocoder_path,
'checkpoint-450000steps.pkl',
),
vocoder_config=os.path.join(
self.vocoder_path,
'config.yml',
),
ngpu=NGPU,
beam_size=BEAM_SIZE,
)
# Restore working directory
os.chdir(cwd)
# Save result
output_path = 'output.wav'
sf.write(
output_path,
out_wav,
16000,
"PCM_16",
)
return output_path
def main():
app = App()
with gr.Blocks() as demo:
gr.Markdown(DESCRIPTION)
with gr.Group():
input_audio = gr.Audio(
label="Input speech",
type="filepath",
sources=["upload", "microphone"],
format='wav',
streaming=False,
visible=True,
)
btn = gr.Button("Translate")
output_audio = gr.Audio(
label="Translated speech",
autoplay=False,
streaming=False,
type="numpy",
)
btn.click(
fn=app.s2st,
inputs=[input_audio],
outputs=[output_audio],
api_name="run",
)
demo.queue(max_size=50).launch()
if __name__ == '__main__':
main()