MangaNinja-demo / run_gradio.py
fffiloni's picture
Ready for Zero
9c1c36c verified
import spaces
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw
import cv2
import gradio as gr
import torch
import torch.nn.functional as F
from omegaconf import OmegaConf
import numpy as np
import os
import re
from PIL import Image, ImageDraw
import cv2
#
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
import torch.nn as nn
from inference.manganinjia_pipeline import MangaNinjiaPipeline
from diffusers import (
ControlNetModel,
DiffusionPipeline,
DDIMScheduler,
AutoencoderKL,
)
from src.models.mutual_self_attention_multi_scale import ReferenceAttentionControl
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.refunet_2d_condition import RefUNet2DConditionModel
from src.point_network import PointNet
from src.annotator.lineart import BatchLineartDetector
val_configs = OmegaConf.load('./configs/inference.yaml')
# download the checkpoints
from huggingface_hub import snapshot_download, hf_hub_download
os.makedirs("checkpoints", exist_ok=True)
# List of subdirectories to create inside "checkpoints"
subfolders = [
"StableDiffusion",
"models",
"MangaNinjia"
]
# Create each subdirectory
for subfolder in subfolders:
os.makedirs(os.path.join("checkpoints", subfolder), exist_ok=True)
# List of subdirectories to create inside "models"
models_subfolders = [
"clip-vit-large-patch14",
"control_v11p_sd15_lineart",
"Annotators"
]
# Create each subdirectory
for subfolder in models_subfolders:
os.makedirs(os.path.join("checkpoints/models", subfolder), exist_ok=True)
snapshot_download(
repo_id = "stable-diffusion-v1-5/stable-diffusion-v1-5",
local_dir = "./checkpoints/StableDiffusion"
)
snapshot_download(
repo_id = "openai/clip-vit-large-patch14",
local_dir = "./checkpoints/models/clip-vit-large-patch14"
)
snapshot_download(
repo_id = "lllyasviel/control_v11p_sd15_lineart",
local_dir = "./checkpoints/models/control_v11p_sd15_lineart"
)
hf_hub_download(
repo_id = "lllyasviel/Annotators",
filename = "sk_model.pth",
local_dir = "./checkpoints/models/Annotators"
)
snapshot_download(
repo_id = "Johanan0528/MangaNinjia",
local_dir = "./checkpoints/MangaNinjia"
)
# === load the checkpoint ===
pretrained_model_name_or_path = val_configs.model_path.pretrained_model_name_or_path
refnet_clip_vision_encoder_path = val_configs.model_path.clip_vision_encoder_path
controlnet_clip_vision_encoder_path = val_configs.model_path.clip_vision_encoder_path
controlnet_model_name_or_path = val_configs.model_path.controlnet_model_name
annotator_ckpts_path = val_configs.model_path.annotator_ckpts_path
output_root = val_configs.inference_config.output_path
device = val_configs.inference_config.device
preprocessor = BatchLineartDetector(annotator_ckpts_path)
in_channels_reference_unet = 4
in_channels_denoising_unet = 4
in_channels_controlnet = 4
noise_scheduler = DDIMScheduler.from_pretrained(pretrained_model_name_or_path,subfolder='scheduler')
vae = AutoencoderKL.from_pretrained(
pretrained_model_name_or_path,
subfolder='vae'
)
denoising_unet = UNet2DConditionModel.from_pretrained(
pretrained_model_name_or_path,subfolder="unet",
in_channels=in_channels_denoising_unet,
low_cpu_mem_usage=False,
ignore_mismatched_sizes=True
)
reference_unet = RefUNet2DConditionModel.from_pretrained(
pretrained_model_name_or_path,subfolder="unet",
in_channels=in_channels_reference_unet,
low_cpu_mem_usage=False,
ignore_mismatched_sizes=True
)
refnet_tokenizer = CLIPTokenizer.from_pretrained(refnet_clip_vision_encoder_path)
refnet_text_encoder = CLIPTextModel.from_pretrained(refnet_clip_vision_encoder_path)
refnet_image_enc = CLIPVisionModelWithProjection.from_pretrained(refnet_clip_vision_encoder_path)
controlnet = ControlNetModel.from_pretrained(
controlnet_model_name_or_path,
in_channels=in_channels_controlnet,
low_cpu_mem_usage=False,
ignore_mismatched_sizes=True
)
controlnet_tokenizer = CLIPTokenizer.from_pretrained(controlnet_clip_vision_encoder_path)
controlnet_text_encoder = CLIPTextModel.from_pretrained(controlnet_clip_vision_encoder_path)
controlnet_image_enc = CLIPVisionModelWithProjection.from_pretrained(controlnet_clip_vision_encoder_path)
point_net=PointNet()
reference_control_writer = ReferenceAttentionControl(
reference_unet,
do_classifier_free_guidance=False,
mode="write",
fusion_blocks="full",
)
reference_control_reader = ReferenceAttentionControl(
denoising_unet,
do_classifier_free_guidance=False,
mode="read",
fusion_blocks="full",
)
controlnet.load_state_dict(
torch.load(val_configs.model_path.manga_control_model_path, map_location="cpu"),
strict=False,
)
point_net.load_state_dict(
torch.load(val_configs.model_path.point_net_path, map_location="cpu"),
strict=False,
)
reference_unet.load_state_dict(
torch.load(val_configs.model_path.manga_reference_model_path, map_location="cpu"),
strict=False,
)
denoising_unet.load_state_dict(
torch.load(val_configs.model_path.manga_main_model_path, map_location="cpu"),
strict=False,
)
pipe = MangaNinjiaPipeline(
reference_unet=reference_unet,
controlnet=controlnet,
denoising_unet=denoising_unet,
vae=vae,
refnet_tokenizer=refnet_tokenizer,
refnet_text_encoder=refnet_text_encoder,
refnet_image_encoder=refnet_image_enc,
controlnet_tokenizer=controlnet_tokenizer,
controlnet_text_encoder=controlnet_text_encoder,
controlnet_image_encoder=controlnet_image_enc,
scheduler=noise_scheduler,
point_net=point_net
)
pipe = pipe.to(torch.device(device))
def string_to_np_array(coord_string):
coord_string = coord_string.strip('[]')
coords = re.findall(r'\d+', coord_string)
coords = list(map(int, coords))
coord_array = np.array(coords).reshape(-1, 2)
return coord_array
def infer_single(is_lineart, ref_image, target_image, output_coords_ref, output_coords_base, seed = -1, num_inference_steps=20, guidance_scale_ref = 9, guidance_scale_point =15 ):
"""
mask: 0/1 1-channel np.array
image: rgb np.array
"""
generator = torch.cuda.manual_seed(seed)
matrix1 = np.zeros((512, 512), dtype=np.uint8)
matrix2 = np.zeros((512, 512), dtype=np.uint8)
output_coords_ref = string_to_np_array(output_coords_ref)
output_coords_base = string_to_np_array(output_coords_base)
for index, (coords_ref,coords_base) in enumerate(zip(output_coords_ref,output_coords_base)):
y1, x1 = coords_ref
y2, x2 = coords_base
matrix1[y1, x1] = index + 1
matrix2[y2, x2] = index + 1
point_ref = torch.from_numpy(matrix1).unsqueeze(0).unsqueeze(0)
point_main = torch.from_numpy(matrix2).unsqueeze(0).unsqueeze(0)
preprocessor.to(device,dtype=torch.float32)
pipe_out = pipe(
is_lineart,
ref_image,
target_image,
target_image,
denosing_steps=num_inference_steps,
processing_res=512,
match_input_res=True,
batch_size=1,
show_progress_bar=True,
guidance_scale_ref=guidance_scale_ref,
guidance_scale_point=guidance_scale_point,
preprocessor=preprocessor,
generator=generator,
point_ref=point_ref,
point_main=point_main,
)
return pipe_out
def inference_single_image(ref_image,
tar_image,
ddim_steps,
scale_ref,
scale_point,
seed,
output_coords1,
output_coords2,
is_lineart
):
if seed == -1:
seed = np.random.randint(10000)
pipe_out = infer_single(is_lineart, ref_image, tar_image, output_coords_ref=output_coords1, output_coords_base=output_coords2,seed=seed ,num_inference_steps=ddim_steps, guidance_scale_ref = scale_ref, guidance_scale_point = scale_point
)
return pipe_out
clicked_points_img1 = []
clicked_points_img2 = []
current_img_idx = 0
max_clicks = 14
point_size = 8
colors = [(255, 0, 0), (0, 255, 0)]
# Process images: resizing them to 512x512
def process_image(ref, base):
ref_resized = cv2.resize(ref, (512, 512)) # Note OpenCV resize order is (width, height)
base_resized = cv2.resize(base, (512, 512))
return ref_resized, base_resized
# Convert string to numpy array of coordinates
def string_to_np_array(coord_string):
coord_string = coord_string.strip('[]')
coords = re.findall(r'\d+', coord_string)
coords = list(map(int, coords))
coord_array = np.array(coords).reshape(-1, 2)
return coord_array
# Function to handle click events
def get_select_coords(img1, img2, evt: gr.SelectData):
global clicked_points_img1, clicked_points_img2, current_img_idx
click_coords = (evt.index[1], evt.index[0])
if current_img_idx == 0:
clicked_points_img1.append(click_coords)
if len(clicked_points_img1) > max_clicks:
clicked_points_img1 = []
current_img = img1
clicked_points = clicked_points_img1
else:
clicked_points_img2.append(click_coords)
if len(clicked_points_img2) > max_clicks:
clicked_points_img2 = []
current_img = img2
clicked_points = clicked_points_img2
current_img_idx = 1 - current_img_idx
img_pil = Image.fromarray(current_img.astype('uint8'))
draw = ImageDraw.Draw(img_pil)
for idx, point in enumerate(clicked_points):
x, y = point
color = colors[current_img_idx]
for dx in range(-point_size, point_size + 1):
for dy in range(-point_size, point_size + 1):
if 0 <= y + dy < img_pil.size[0] and 0 <= x + dx < img_pil.size[1]:
draw.point((y+dy, x+dx), fill=color)
img_out = np.array(img_pil)
coord_array = np.array([(x, y) for x, y in clicked_points])
return img_out, coord_array
# Function to clear the clicked points
def undo_last_point(ref, base):
global clicked_points_img1, clicked_points_img2, current_img_idx
current_img_idx=1-current_img_idx
if current_img_idx == 0 and clicked_points_img1:
clicked_points_img1.pop() # Undo last point in ref
elif current_img_idx == 1 and clicked_points_img2:
clicked_points_img2.pop() # Undo last point in base
# After removing the last point, redraw the image without it
if current_img_idx == 0:
current_img = ref
current_img_other = base
clicked_points = clicked_points_img1
clicked_points_other = clicked_points_img2
else:
current_img = base
current_img_other = ref
clicked_points = clicked_points_img2
clicked_points_other = clicked_points_img1
# Redraw the image without the last point
img_pil = Image.fromarray(current_img.astype('uint8'))
draw = ImageDraw.Draw(img_pil)
for idx, point in enumerate(clicked_points):
x, y = point
color = colors[current_img_idx]
for dx in range(-point_size, point_size + 1):
for dy in range(-point_size, point_size + 1):
if 0 <= y + dy < img_pil.size[0] and 0 <= x + dx < img_pil.size[1]:
draw.point((y+dy, x+dx), fill=color)
img_out = np.array(img_pil)
img_pil_other = Image.fromarray(current_img_other.astype('uint8'),)
draw_other = ImageDraw.Draw(img_pil_other)
for idx, point in enumerate(clicked_points_other):
x, y = point
color = colors[1-current_img_idx]
for dx in range(-point_size, point_size + 1):
for dy in range(-point_size, point_size + 1):
if 0 <= y + dy < img_pil.size[0] and 0 <= x + dx < img_pil.size[1]:
draw_other.point((y+dy, x+dx), fill=color)
img_out_other = np.array(img_pil_other)
coord_array = np.array([(x, y) for x, y in clicked_points])
# Return the updated image and coordinates as text
updated_coords = str(coord_array.tolist())
# If current_img_idx is 0, it means we are working with ref, so return for ref
if current_img_idx == 0:
coord_array2 = np.array([(x, y) for x, y in clicked_points_img2])
updated_coords2 = str(coord_array2.tolist())
return img_out, updated_coords, img_out_other, updated_coords2 # for ref image
else:
coord_array1 = np.array([(x, y) for x, y in clicked_points_img1])
updated_coords1 = str(coord_array1.tolist())
return img_out_other, updated_coords1, img_out, updated_coords # for base image
# Main function to run the image processing
@spaces.GPU
def run_local(ref, base, *args, progress=gr.Progress(track_tqdm=True)):
image = Image.fromarray(base)
ref_image = Image.fromarray(ref)
pipe_out = inference_single_image(ref_image.copy(), image.copy(), *args)
to_save_dict = pipe_out.to_save_dict
to_save_dict['edit2'] = pipe_out.img_pil
return [to_save_dict['edit2'], to_save_dict['edge2_black']]
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# MangaNinja: Line Art Colorization with Precise Reference Following")
with gr.Row():
baseline_gallery = gr.Gallery(label='Output', show_label=True, elem_id="gallery", columns=1, height=768)
with gr.Accordion("Advanced Option", open=True):
num_samples = 1
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=50, step=1)
scale_ref = gr.Slider(label="Guidance of ref", minimum=0, maximum=30.0, value=9, step=0.1)
scale_point = gr.Slider(label="Guidance of points", minimum=0, maximum=30.0, value=15, step=0.1)
is_lineart = gr.Checkbox(label="Input is lineart", value=False)
seed = gr.Slider(label="Seed", minimum=-1, maximum=999999999, step=1, value=-1)
gr.Markdown("### Tutorial")
gr.Markdown("1. Upload the reference image and target image. Note that for the target image, there are two modes: you can upload an RGB image, and the model will automatically extract the line art; or you can directly upload the line art by checking the 'input is lineart' option.")
gr.Markdown("2. Click 'Process Images' to resize the images to 512*512 resolution.")
gr.Markdown("3. (Optional) **Starting from the reference image**, **alternately** click on the reference and target images in sequence to define matching points. Use 'Undo' to revert the last action.")
gr.Markdown("4. Click 'Generate' to produce the result.")
gr.Markdown("# Upload the reference image and target image")
with gr.Row():
ref = gr.Image(label="Reference Image",)
base = gr.Image(label="Target Image",)
gr.Button("Process Images").click(process_image, inputs=[ref, base], outputs=[ref, base])
with gr.Row():
output_img1 = gr.Image(label="Reference Output")
output_coords1 = gr.Textbox(lines=2, label="Clicked Coordinates Image 1 (npy format)")
output_img2 = gr.Image(label="Base Output")
output_coords2 = gr.Textbox(lines=2, label="Clicked Coordinates Image 2 (npy format)")
# Image click select functions
ref.select(get_select_coords, [ref, base], [output_img1, output_coords1])
base.select(get_select_coords, [ref, base], [output_img2, output_coords2])
# Undo button
undo_button = gr.Button("Undo")
undo_button.click(undo_last_point, inputs=[ref, base], outputs=[output_img1, output_coords1, output_img2, output_coords2])
run_local_button = gr.Button("Generate")
with gr.Row():
gr.Examples(
examples=[
['test_cases/hz0.png', 'test_cases/manga_target_examples/target_1.jpg'],
['test_cases/more_cases/az0.png', 'test_cases/manga_target_examples/target_2.jpg'],
['test_cases/more_cases/hi0.png', 'test_cases/manga_target_examples/target_3.jpg'],
['test_cases/more_cases/kn0.jpg', 'test_cases/manga_target_examples/target_4.jpg'],
['test_cases/more_cases/rk0.jpg', 'test_cases/manga_target_examples/target_5.jpg'],
],
inputs=[ref, base],
cache_examples=False,
examples_per_page=100
)
run_local_button.click(fn=run_local,
inputs=[ref,
base,
ddim_steps,
scale_ref,
scale_point,
seed,
output_coords1,
output_coords2,
is_lineart
],
outputs=[baseline_gallery]
)
demo.launch(show_api=False, show_error=True)