Spaces:
Running
Running
import numpy as np | |
import pandas as pd | |
import torch | |
from huggingface_hub import PyTorchModelHubMixin | |
import sys | |
from tqdm import trange | |
sys.path.append("../") | |
from model.module import * | |
class KronosTokenizer(nn.Module, PyTorchModelHubMixin): | |
""" | |
KronosTokenizer module for tokenizing input data using a hybrid quantization approach. | |
This tokenizer utilizes a combination of encoder and decoder Transformer blocks | |
along with the Binary Spherical Quantization (BSQuantizer) to compress and decompress input data. | |
Args: | |
d_in (int): Input dimension. | |
d_model (int): Model dimension. | |
n_heads (int): Number of attention heads. | |
ff_dim (int): Feed-forward dimension. | |
n_enc_layers (int): Number of encoder layers. | |
n_dec_layers (int): Number of decoder layers. | |
ffn_dropout_p (float): Dropout probability for feed-forward networks. | |
attn_dropout_p (float): Dropout probability for attention mechanisms. | |
resid_dropout_p (float): Dropout probability for residual connections. | |
s1_bits (int): Number of bits for the pre token in BSQuantizer. | |
s2_bits (int): Number of bits for the post token in BSQuantizer. | |
beta (float): Beta parameter for BSQuantizer. | |
gamma0 (float): Gamma0 parameter for BSQuantizer. | |
gamma (float): Gamma parameter for BSQuantizer. | |
zeta (float): Zeta parameter for BSQuantizer. | |
group_size (int): Group size parameter for BSQuantizer. | |
""" | |
def __init__(self, d_in, d_model, n_heads, ff_dim, n_enc_layers, n_dec_layers, ffn_dropout_p, attn_dropout_p, resid_dropout_p, s1_bits, s2_bits, beta, gamma0, gamma, zeta, group_size): | |
super().__init__() | |
self.d_in = d_in | |
self.d_model = d_model | |
self.n_heads = n_heads | |
self.ff_dim = ff_dim | |
self.enc_layers = n_enc_layers | |
self.dec_layers = n_dec_layers | |
self.ffn_dropout_p = ffn_dropout_p | |
self.attn_dropout_p = attn_dropout_p | |
self.resid_dropout_p = resid_dropout_p | |
self.s1_bits = s1_bits | |
self.s2_bits = s2_bits | |
self.codebook_dim = s1_bits + s2_bits # Total dimension of the codebook after quantization | |
self.embed = nn.Linear(self.d_in, self.d_model) | |
self.head = nn.Linear(self.d_model, self.d_in) | |
# Encoder Transformer Blocks | |
self.encoder = nn.ModuleList([ | |
TransformerBlock(self.d_model, self.n_heads, self.ff_dim, self.ffn_dropout_p, self.attn_dropout_p, self.resid_dropout_p) | |
for _ in range(self.enc_layers - 1) | |
]) | |
# Decoder Transformer Blocks | |
self.decoder = nn.ModuleList([ | |
TransformerBlock(self.d_model, self.n_heads, self.ff_dim, self.ffn_dropout_p, self.attn_dropout_p, self.resid_dropout_p) | |
for _ in range(self.dec_layers - 1) | |
]) | |
self.quant_embed = nn.Linear(in_features=self.d_model, out_features=self.codebook_dim) # Linear layer before quantization | |
self.post_quant_embed_pre = nn.Linear(in_features=self.s1_bits, out_features=self.d_model) # Linear layer after quantization (pre part - s1 bits) | |
self.post_quant_embed = nn.Linear(in_features=self.codebook_dim, out_features=self.d_model) # Linear layer after quantization (full codebook) | |
self.tokenizer = BSQuantizer(self.s1_bits, self.s2_bits, beta, gamma0, gamma, zeta, group_size) # BSQuantizer module | |
def forward(self, x): | |
""" | |
Forward pass of the KronosTokenizer. | |
Args: | |
x (torch.Tensor): Input tensor of shape (batch_size, seq_len, d_in). | |
Returns: | |
tuple: A tuple containing: | |
- tuple: (z_pre, z) - Reconstructed outputs from decoder with s1_bits and full codebook respectively, | |
both of shape (batch_size, seq_len, d_in). | |
- torch.Tensor: bsq_loss - Loss from the BSQuantizer. | |
- torch.Tensor: quantized - Quantized representation from BSQuantizer. | |
- torch.Tensor: z_indices - Indices from the BSQuantizer. | |
""" | |
z = self.embed(x) | |
for layer in self.encoder: | |
z = layer(z) | |
z = self.quant_embed(z) # (B, T, codebook) | |
bsq_loss, quantized, z_indices = self.tokenizer(z) | |
quantized_pre = quantized[:, :, :self.s1_bits] # Extract the first part of quantized representation (s1_bits) | |
z_pre = self.post_quant_embed_pre(quantized_pre) | |
z = self.post_quant_embed(quantized) | |
# Decoder layers (for pre part - s1 bits) | |
for layer in self.decoder: | |
z_pre = layer(z_pre) | |
z_pre = self.head(z_pre) | |
# Decoder layers (for full codebook) | |
for layer in self.decoder: | |
z = layer(z) | |
z = self.head(z) | |
return (z_pre, z), bsq_loss, quantized, z_indices | |
def indices_to_bits(self, x, half=False): | |
""" | |
Converts indices to bit representations and scales them. | |
Args: | |
x (torch.Tensor): Indices tensor. | |
half (bool, optional): Whether to process only half of the codebook dimension. Defaults to False. | |
Returns: | |
torch.Tensor: Bit representation tensor. | |
""" | |
if half: | |
x1 = x[0] # Assuming x is a tuple of indices if half is True | |
x2 = x[1] | |
mask = 2 ** torch.arange(self.codebook_dim//2, device=x1.device, dtype=torch.long) # Create a mask for bit extraction | |
x1 = (x1.unsqueeze(-1) & mask) != 0 # Extract bits for the first half | |
x2 = (x2.unsqueeze(-1) & mask) != 0 # Extract bits for the second half | |
x = torch.cat([x1, x2], dim=-1) # Concatenate the bit representations | |
else: | |
mask = 2 ** torch.arange(self.codebook_dim, device=x.device, dtype=torch.long) # Create a mask for bit extraction | |
x = (x.unsqueeze(-1) & mask) != 0 # Extract bits | |
x = x.float() * 2 - 1 # Convert boolean to bipolar (-1, 1) | |
q_scale = 1. / (self.codebook_dim ** 0.5) # Scaling factor | |
x = x * q_scale | |
return x | |
def encode(self, x, half=False): | |
""" | |
Encodes the input data into quantized indices. | |
Args: | |
x (torch.Tensor): Input tensor of shape (batch_size, seq_len, d_in). | |
half (bool, optional): Whether to use half quantization in BSQuantizer. Defaults to False. | |
Returns: | |
torch.Tensor: Quantized indices from BSQuantizer. | |
""" | |
z = self.embed(x) | |
for layer in self.encoder: | |
z = layer(z) | |
z = self.quant_embed(z) | |
bsq_loss, quantized, z_indices = self.tokenizer(z, half) | |
return z_indices | |
def decode(self, x, half=False): | |
""" | |
Decodes quantized indices back to the input data space. | |
Args: | |
x (torch.Tensor): Quantized indices tensor. | |
half (bool, optional): Whether the indices were generated with half quantization. Defaults to False. | |
Returns: | |
torch.Tensor: Reconstructed output tensor of shape (batch_size, seq_len, d_in). | |
""" | |
quantized = self.indices_to_bits(x, half) | |
z = self.post_quant_embed(quantized) | |
for layer in self.decoder: | |
z = layer(z) | |
z = self.head(z) | |
return z | |
class Kronos(nn.Module, PyTorchModelHubMixin): | |
""" | |
Kronos Model. | |
Args: | |
s1_bits (int): Number of bits for pre tokens. | |
s2_bits (int): Number of bits for post tokens. | |
n_layers (int): Number of Transformer blocks. | |
d_model (int): Dimension of the model's embeddings and hidden states. | |
n_heads (int): Number of attention heads in the MultiheadAttention layers. | |
ff_dim (int): Dimension of the feedforward network in the Transformer blocks. | |
ffn_dropout_p (float): Dropout probability for the feedforward network. | |
attn_dropout_p (float): Dropout probability for the attention layers. | |
resid_dropout_p (float): Dropout probability for residual connections. | |
token_dropout_p (float): Dropout probability for token embeddings. | |
learn_te (bool): Whether to use learnable temporal embeddings. | |
""" | |
def __init__(self, s1_bits, s2_bits, n_layers, d_model, n_heads, ff_dim, ffn_dropout_p, attn_dropout_p, resid_dropout_p, token_dropout_p, learn_te): | |
super().__init__() | |
self.s1_bits = s1_bits | |
self.s2_bits = s2_bits | |
self.n_layers = n_layers | |
self.d_model = d_model | |
self.n_heads = n_heads | |
self.learn_te = learn_te | |
self.ff_dim = ff_dim | |
self.ffn_dropout_p = ffn_dropout_p | |
self.attn_dropout_p = attn_dropout_p | |
self.resid_dropout_p = resid_dropout_p | |
self.token_dropout_p = token_dropout_p | |
self.s1_vocab_size = 2 ** self.s1_bits | |
self.token_drop = nn.Dropout(self.token_dropout_p) | |
self.embedding = HierarchicalEmbedding(self.s1_bits, self.s2_bits, self.d_model) | |
self.time_emb = TemporalEmbedding(self.d_model, self.learn_te) | |
self.transformer = nn.ModuleList([ | |
TransformerBlock(self.d_model, self.n_heads, self.ff_dim, self.ffn_dropout_p, self.attn_dropout_p, self.resid_dropout_p) | |
for _ in range(self.n_layers) | |
]) | |
self.norm = RMSNorm(self.d_model) | |
self.dep_layer = DependencyAwareLayer(self.d_model) | |
self.head = DualHead(self.s1_bits, self.s2_bits, self.d_model) | |
self.apply(self._init_weights) | |
def _init_weights(self, module): | |
if isinstance(module, nn.Linear): | |
nn.init.xavier_normal_(module.weight) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.Embedding): | |
nn.init.normal_(module.weight, mean=0, std=self.embedding.d_model ** -0.5) | |
elif isinstance(module, nn.LayerNorm): | |
nn.init.ones_(module.weight) | |
nn.init.zeros_(module.bias) | |
elif isinstance(module, RMSNorm): | |
nn.init.ones_(module.weight) | |
def forward(self, s1_ids, s2_ids, stamp=None, padding_mask=None, use_teacher_forcing=False, s1_targets=None): | |
""" | |
Args: | |
s1_ids (torch.Tensor): Input tensor of s1 token IDs. Shape: [batch_size, seq_len] | |
s2_ids (torch.Tensor): Input tensor of s2 token IDs. Shape: [batch_size, seq_len] | |
stamp (torch.Tensor, optional): Temporal stamp tensor. Shape: [batch_size, seq_len]. Defaults to None. | |
padding_mask (torch.Tensor, optional): Mask for padding tokens. Shape: [batch_size, seq_len]. Defaults to None. | |
use_teacher_forcing (bool, optional): Whether to use teacher forcing for s1 decoding. Defaults to False. | |
s1_targets (torch.Tensor, optional): Target s1 token IDs for teacher forcing. Shape: [batch_size, seq_len]. Defaults to None. | |
Returns: | |
Tuple[torch.Tensor, torch.Tensor]: | |
- s1 logits: Logits for s1 token predictions. Shape: [batch_size, seq_len, s1_vocab_size] | |
- s2_logits: Logits for s2 token predictions, conditioned on s1. Shape: [batch_size, seq_len, s2_vocab_size] | |
""" | |
x = self.embedding([s1_ids, s2_ids]) | |
if stamp is not None: | |
time_embedding = self.time_emb(stamp) | |
x = x + time_embedding | |
x = self.token_drop(x) | |
for layer in self.transformer: | |
x = layer(x, key_padding_mask=padding_mask) | |
x = self.norm(x) | |
s1_logits = self.head(x) | |
if use_teacher_forcing: | |
sibling_embed = self.embedding.emb_s1(s1_targets) | |
else: | |
s1_probs = F.softmax(s1_logits.detach(), dim=-1) | |
sample_s1_ids = torch.multinomial(s1_probs.view(-1, self.s1_vocab_size), 1).view(s1_ids.shape) | |
sibling_embed = self.embedding.emb_s1(sample_s1_ids) | |
x2 = self.dep_layer(x, sibling_embed, key_padding_mask=padding_mask) # Dependency Aware Layer: Condition on s1 embeddings | |
s2_logits = self.head.cond_forward(x2) | |
return s1_logits, s2_logits | |
def decode_s1(self, s1_ids, s2_ids, stamp=None, padding_mask=None): | |
""" | |
Decodes only the s1 tokens. | |
This method performs a forward pass to predict only s1 tokens. It returns the s1 logits | |
and the context representation from the Transformer, which can be used for subsequent s2 decoding. | |
Args: | |
s1_ids (torch.Tensor): Input tensor of s1 token IDs. Shape: [batch_size, seq_len] | |
s2_ids (torch.Tensor): Input tensor of s2 token IDs. Shape: [batch_size, seq_len] | |
stamp (torch.Tensor, optional): Temporal stamp tensor. Shape: [batch_size, seq_len]. Defaults to None. | |
padding_mask (torch.Tensor, optional): Mask for padding tokens. Shape: [batch_size, seq_len]. Defaults to None. | |
Returns: | |
Tuple[torch.Tensor, torch.Tensor]: | |
- s1 logits: Logits for s1 token predictions. Shape: [batch_size, seq_len, s1_vocab_size] | |
- context: Context representation from the Transformer. Shape: [batch_size, seq_len, d_model] | |
""" | |
x = self.embedding([s1_ids, s2_ids]) | |
if stamp is not None: | |
time_embedding = self.time_emb(stamp) | |
x = x + time_embedding | |
x = self.token_drop(x) | |
for layer in self.transformer: | |
x = layer(x, key_padding_mask=padding_mask) | |
x = self.norm(x) | |
s1_logits = self.head(x) | |
return s1_logits, x | |
def decode_s2(self, context, s1_ids, padding_mask=None): | |
""" | |
Decodes the s2 tokens, conditioned on the context and s1 tokens. | |
This method decodes s2 tokens based on a pre-computed context representation (typically from `decode_s1`) | |
and the s1 token IDs. It uses the dependency-aware layer and the conditional s2 head to predict s2 tokens. | |
Args: | |
context (torch.Tensor): Context representation from the transformer (output of decode_s1). | |
Shape: [batch_size, seq_len, d_model] | |
s1_ids (torch.torch.Tensor): Input tensor of s1 token IDs. Shape: [batch_size, seq_len] | |
padding_mask (torch.Tensor, optional): Mask for padding tokens. Shape: [batch_size, seq_len]. Defaults to None. | |
Returns: | |
torch.Tensor: s2 logits. Shape: [batch_size, seq_len, s2_vocab_size] | |
""" | |
sibling_embed = self.embedding.emb_s1(s1_ids) | |
x2 = self.dep_layer(context, sibling_embed, key_padding_mask=padding_mask) | |
return self.head.cond_forward(x2) | |
def top_k_top_p_filtering( | |
logits, | |
top_k: int = 0, | |
top_p: float = 1.0, | |
filter_value: float = -float("Inf"), | |
min_tokens_to_keep: int = 1, | |
): | |
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering | |
Args: | |
logits: logits distribution shape (batch size, vocabulary size) | |
if top_k > 0: keep only top k tokens with highest probability (top-k filtering). | |
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). | |
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) | |
Make sure we keep at least min_tokens_to_keep per batch example in the output | |
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 | |
""" | |
if top_k > 0: | |
top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check | |
# Remove all tokens with a probability less than the last token of the top-k | |
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] | |
logits[indices_to_remove] = filter_value | |
return logits | |
if top_p < 1.0: | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) | |
# Remove tokens with cumulative probability above the threshold (token with 0 are kept) | |
sorted_indices_to_remove = cumulative_probs > top_p | |
if min_tokens_to_keep > 1: | |
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below) | |
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0 | |
# Shift the indices to the right to keep also the first token above the threshold | |
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() | |
sorted_indices_to_remove[..., 0] = 0 | |
# scatter sorted tensors to original indexing | |
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) | |
logits[indices_to_remove] = filter_value | |
return logits | |
def sample_from_logits(logits, temperature=1.0, top_k=None, top_p=None, sample_logits=True): | |
logits = logits / temperature | |
if top_k is not None or top_p is not None: | |
if top_k > 0 or top_p < 1.0: | |
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p) | |
probs = F.softmax(logits, dim=-1) | |
if not sample_logits: | |
_, x = top_k(probs, k=1, dim=-1) | |
else: | |
x = torch.multinomial(probs, num_samples=1) | |
return x | |
def auto_regressive_inference(tokenizer, model, x, x_stamp, y_stamp, max_context, pred_len, clip=5, T=1.0, top_k=0, top_p=0.99, sample_count=5, verbose=False): | |
with torch.no_grad(): | |
batch_size = x.size(0) | |
initial_seq_len = x.size(1) | |
x = torch.clip(x, -clip, clip) | |
device = x.device | |
x = x.unsqueeze(1).repeat(1, sample_count, 1, 1).reshape(-1, x.size(1), x.size(2)).to(device) | |
x_stamp = x_stamp.unsqueeze(1).repeat(1, sample_count, 1, 1).reshape(-1, x_stamp.size(1), x_stamp.size(2)).to(device) | |
y_stamp = y_stamp.unsqueeze(1).repeat(1, sample_count, 1, 1).reshape(-1, y_stamp.size(1), y_stamp.size(2)).to(device) | |
x_token = tokenizer.encode(x, half=True) | |
def get_dynamic_stamp(x_stamp, y_stamp, current_seq_len, pred_step): | |
if current_seq_len <= max_context - pred_step: | |
return torch.cat([x_stamp, y_stamp[:, :pred_step, :]], dim=1) | |
else: | |
start_idx = max_context - pred_step | |
return torch.cat([x_stamp[:, -start_idx:, :], y_stamp[:, :pred_step, :]], dim=1) | |
if verbose: | |
ran = trange | |
else: | |
ran = range | |
for i in ran(pred_len): | |
current_seq_len = initial_seq_len + i | |
if current_seq_len <= max_context: | |
input_tokens = x_token | |
else: | |
input_tokens = [t[:, -max_context:].contiguous() for t in x_token] | |
current_stamp = get_dynamic_stamp(x_stamp, y_stamp, current_seq_len, i) | |
s1_logits, context = model.decode_s1(input_tokens[0], input_tokens[1], current_stamp) | |
s1_logits = s1_logits[:, -1, :] | |
sample_pre = sample_from_logits(s1_logits, temperature=T, top_k=top_k, top_p=top_p, sample_logits=True) | |
s2_logits = model.decode_s2(context, sample_pre) | |
s2_logits = s2_logits[:, -1, :] | |
sample_post = sample_from_logits(s2_logits, temperature=T, top_k=top_k, top_p=top_p, sample_logits=True) | |
x_token[0] = torch.cat([x_token[0], sample_pre], dim=1) | |
x_token[1] = torch.cat([x_token[1], sample_post], dim=1) | |
input_tokens = [t[:, -max_context:].contiguous() for t in x_token] | |
z = tokenizer.decode(input_tokens, half=True) | |
z = z.reshape(batch_size, sample_count, z.size(1), z.size(2)) | |
preds = z.cpu().numpy() | |
# preds = np.mean(preds, axis=1) | |
return preds | |
def calc_time_stamps(x_timestamp): | |
time_df = pd.DataFrame() | |
time_df['minute'] = x_timestamp.dt.minute | |
time_df['hour'] = x_timestamp.dt.hour | |
time_df['weekday'] = x_timestamp.dt.weekday | |
time_df['day'] = x_timestamp.dt.day | |
time_df['month'] = x_timestamp.dt.month | |
return time_df | |
class KronosPredictor: | |
def __init__(self, model, tokenizer, device="cuda:0", max_context=512, clip=5): | |
self.tokenizer = tokenizer | |
self.model = model | |
self.max_context = max_context | |
self.clip = clip | |
self.price_cols = ['open', 'high', 'low', 'close'] | |
self.vol_col = 'volume' | |
self.amt_vol = 'amount' | |
self.time_cols = ['minute', 'hour', 'weekday', 'day', 'month'] | |
self.device = device | |
self.tokenizer = self.tokenizer.to(self.device) | |
self.model = self.model.to(self.device) | |
def generate(self, x, x_stamp, y_stamp, pred_len, T, top_k, top_p, sample_count, verbose): | |
x_tensor = torch.from_numpy(np.array(x).astype(np.float32)).to(self.device) | |
x_stamp_tensor = torch.from_numpy(np.array(x_stamp).astype(np.float32)).to(self.device) | |
y_stamp_tensor = torch.from_numpy(np.array(y_stamp).astype(np.float32)).to(self.device) | |
preds = auto_regressive_inference(self.tokenizer, self.model, x_tensor, x_stamp_tensor, y_stamp_tensor, self.max_context, pred_len, | |
self.clip, T, top_k, top_p, sample_count, verbose) | |
preds = preds[:, :, -pred_len:, :] | |
return preds | |
def predict(self, df, x_timestamp, y_timestamp, pred_len, T=1.0, top_k=0, top_p=0.9, sample_count=1, verbose=True): | |
if not isinstance(df, pd.DataFrame): | |
raise ValueError("Input must be a pandas DataFrame.") | |
if not all(col in df.columns for col in self.price_cols): | |
raise ValueError(f"Price columns {self.price_cols} not found in DataFrame.") | |
df = df.copy() | |
if self.vol_col not in df.columns: | |
df[self.vol_col] = 0.0 # Fill missing volume with zeros | |
df[self.amt_vol] = 0.0 # Fill missing amount with zeros | |
if self.amt_vol not in df.columns and self.vol_col in df.columns: | |
df[self.amt_vol] = df[self.vol_col] * df[self.price_cols].mean(axis=1) | |
if df[self.price_cols + [self.vol_col, self.amt_vol]].isnull().values.any(): | |
raise ValueError("Input DataFrame contains NaN values in price or volume columns.") | |
x_time_df = calc_time_stamps(x_timestamp) | |
y_time_df = calc_time_stamps(y_timestamp) | |
x = df[self.price_cols + [self.vol_col, self.amt_vol]].values.astype(np.float32) | |
x_stamp = x_time_df.values.astype(np.float32) | |
y_stamp = y_time_df.values.astype(np.float32) | |
x_mean, x_std = np.mean(x, axis=0), np.std(x, axis=0) | |
x = (x - x_mean) / (x_std + 1e-5) | |
x = np.clip(x, -self.clip, self.clip) | |
x = x[np.newaxis, :] | |
x_stamp = x_stamp[np.newaxis, :] | |
y_stamp = y_stamp[np.newaxis, :] | |
preds = self.generate(x, x_stamp, y_stamp, pred_len, T, top_k, top_p, sample_count, verbose) | |
preds = preds.squeeze(0) | |
preds = preds * (x_std[np.newaxis, :] + 1e-5) + x_mean[np.newaxis, :] | |
close_preds = preds[:, :, 3].swapaxes(0, 1) | |
volume_preds = preds[:, :, 4].swapaxes(0, 1) | |
close_df = pd.DataFrame(close_preds, columns=[f"pred-{i+1}" for i in range(sample_count)], index=y_timestamp) | |
volume_df = pd.DataFrame(volume_preds, columns=[f"pred-{i + 1}" for i in range(sample_count)], index=y_timestamp) | |
return close_df, volume_df | |