Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,113 Bytes
de9e5b3 0348a07 de9e5b3 0348a07 5226627 78de4fa 6a5e72a 0348a07 5226627 de9e5b3 1b14f71 6a5e72a c4b3dad de9e5b3 5226627 de9e5b3 5226627 de9e5b3 1b14f71 de9e5b3 a5d206f de9e5b3 ee4c8c2 5226627 ee4c8c2 1a1cbce de9e5b3 1a1cbce de9e5b3 5226627 1a1cbce de9e5b3 c0c9d3c de9e5b3 5226627 1a1cbce de9e5b3 5226627 de9e5b3 101c7e5 1a1cbce c361a1d de9e5b3 101c7e5 c361a1d 5226627 de9e5b3 5226627 de9e5b3 5226627 de9e5b3 1a1cbce de9e5b3 5226627 de9e5b3 5226627 de9e5b3 7797e2e 1b14f71 7797e2e de9e5b3 06425c7 80cf68b 391a8bd de9e5b3 5226627 de9e5b3 5226627 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import os
import base64
import io
from typing import TypedDict
import requests
import gradio as gr
from PIL import Image
import examples_db
# Read Baseten configuration from environment variables..
#BTEN_API_KEY = os.getenv("API_KEY")
#URL = os.getenv("URL")
def image_to_base64(image: Image.Image) -> str:
with io.BytesIO() as buffer:
image.save(buffer, format="PNG")
return base64.b64encode(buffer.getvalue()).decode("utf-8")
def ensure_image(img) -> Image.Image:
if isinstance(img, Image.Image):
return img
elif isinstance(img, str):
return Image.open(img)
elif isinstance(img, dict) and "name" in img:
return Image.open(img["name"])
else:
raise ValueError("Cannot convert input to a PIL Image.")
def call_baseten_generate(
image: Image.Image,
prompt: str,
steps: int,
strength: float,
height: int,
width: int,
lora_name: str,
remove_bg: bool,
) -> Image.Image | None:
BTEN_API_KEY = os.getenv("API_KEY")
URL = os.getenv("URL")
image = ensure_image(image) #added .copy()
b64_image = image_to_base64(image)
payload = {
"image": b64_image,
"prompt": prompt,
"steps": steps,
"strength": strength,
"height": height,
"width": width,
"lora_name": lora_name,
"bgrm": remove_bg,
}
headers = {"Authorization": f"Api-Key {BTEN_API_KEY or os.getenv('API_KEY')}"}
try:
if not URL:
raise ValueError("The URL environment variable is not set.")
response = requests.post(URL, headers=headers, json=payload)
if response.status_code == 200:
data = response.json()
gen_b64 = data.get("generated_image", None)
if gen_b64:
return Image.open(io.BytesIO(base64.b64decode(gen_b64)))
else:
return None
else:
print(f"Error: HTTP {response.status_code}\n{response.text}")
return None
except Exception as e:
print(f"Error: {e}")
return None
# ================== MODE CONFIG =====================
Mode = TypedDict(
"Mode",
{
"model": str,
"prompt": str,
"default_strength": float,
"default_height": int,
"default_width": int,
"models": list[str],
"remove_bg": bool,
},
)
MODE_DEFAULTS: dict[str, Mode] = {
"Background Generation": {
"model": "bg_canny_58000_1024",
"prompt": "A vibrant background with dynamic lighting and textures",
"default_strength": 1.2,
"default_height": 1024,
"default_width": 1024,
"models": ["bg_canny_58000_1024", "gen_back_7000_1024"],
"remove_bg": True,
},
"Subject Generation": {
"model": "subject_99000_512",
"prompt": "A detailed portrait with soft lighting",
"default_strength": 1.2,
"default_height": 512,
"default_width": 512,
"models": ["subject_99000_512", "zen_26000_512"],
"remove_bg": True,
},
"Canny": {
"model": "canny_21000_1024",
"prompt": "A futuristic cityscape with neon lights",
"default_strength": 1.2,
"default_height": 1024,
"default_width": 1024,
"models": ["canny_21000_1024"],
"remove_bg": True,
},
"Depth": {
"model": "depth_9800_1024",
"prompt": "A scene with pronounced depth and perspective",
"default_strength": 1.2,
"default_height": 1024,
"default_width": 1024,
"models": ["depth_9800_1024"],
"remove_bg": True,
},
"Deblurring": {
"model": "deblurr_1024_10000",
"prompt": "A scene with pronounced depth and perspective",
"default_strength": 1.2,
"default_height": 1024,
"default_width": 1024,
"models": ["deblurr_1024_10000"],
"remove_bg": False,
},
}
# ================== PRESET EXAMPLES =====================
# ================== UI =====================
header = """
<h1>๐ ZenCtrl / FLUX</h1>
<div align="center" style="line-height: 1;">
<a href="https://github.com/FotographerAI/ZenCtrl/tree/main" target="_blank" style="margin: 2px;" name="github_repo_link"><img src="https://img.shields.io/badge/GitHub-Repo-181717.svg" alt="GitHub Repo" style="display: inline-block; vertical-align: middle;"></a>
<a href="https://huggingface.co/spaces/fotographerai/ZenCtrl" target="_blank" style="margin: 2px;" name="hugging_face_space_link"><img src="https://img.shields.io/badge/๐ค_HuggingFace-Space-ffbd45.svg" alt="Hugging Face Space" style="display: inline-block; vertical-align: middle;"></a>
<a href="https://discord.com/invite/b9RuYQ3F8k" target="_blank" style="margin: 2px;" name="discord_link"><img src="https://img.shields.io/badge/Discord-Join-7289da.svg?logo=discord" alt="Discord Link" style="display: inline-block; vertical-align: middle;"></a>
</div>
"""
with gr.Blocks(title="๐ ZenCtrl") as demo:
gr.HTML(header)
gr.Markdown(
"""
# ZenCtrl Demo
[WIP] One Agent to Generate multi-view, diverse-scene, and task-specific high-resolution images from a single subject imageโwithout fine-tuning.
We are first releasing some of the task specific weights and will release the codes soon.
The goal is to unify all of the visual content generation tasks with a single LLM...
**Modes:**
- **Subject Generation:** Focuses on generating detailed subject portraits.
- **Background Generation:** Creates dynamic, vibrant backgrounds:
You can generate part of the image from sketch while keeping part of it as it is.
- **Canny:** Emphasizes strong edge detection.
- **Depth:** Produces images with realistic depth and perspective.
For more details, shoot us a message on discord.
"""
)
with gr.Tabs():
for mode in MODE_DEFAULTS:
with gr.Tab(mode):
defaults = MODE_DEFAULTS[mode]
gr.Markdown(f"### {mode} Mode")
with gr.Row():
with gr.Column(scale=2):
input_image = gr.Image(label="Input Image", type="pil")
generate_button = gr.Button("Generate")
with gr.Blocks():
model_dropdown = gr.Dropdown(
label="Model",
choices=defaults["models"],
value=defaults["model"],
interactive=True,
)
remove_bg_checkbox = gr.Checkbox(
label="Remove Background", value=defaults["remove_bg"]
)
with gr.Column(scale=2):
output_image = gr.Image(label="Generated Image", type="pil")
prompt_box = gr.Textbox(
label="Prompt", value=defaults["prompt"], lines=2
)
with gr.Accordion("Generation Parameters", open=False):
with gr.Row():
step_slider = gr.Slider(
minimum=2, maximum=28, value=10, step=2, label="Steps"
)
strength_slider = gr.Slider(
minimum=0.5,
maximum=2.0,
value=defaults["default_strength"],
step=0.1,
label="Strength",
)
with gr.Row():
height_slider = gr.Slider(
minimum=512,
maximum=1360,
value=defaults["default_height"],
step=1,
label="Height",
)
width_slider = gr.Slider(
minimum=512,
maximum=1360,
value=defaults["default_width"],
step=1,
label="Width",
)
def on_generate_click(model_name, prompt, steps, strength, height, width, remove_bg, image):
print("๐ on_generate_click triggered")
result = call_baseten_generate(
image,
prompt,
steps,
strength,
height,
width,
model_name,
remove_bg,
)
print("๐ฏ on_generate_click returning:", "Image OK" if result else "None")
return result
generate_button.click(
fn=on_generate_click,
inputs=[
model_dropdown,
prompt_box,
step_slider,
strength_slider,
height_slider,
width_slider,
remove_bg_checkbox,
input_image,
],
outputs=[output_image],
concurrency_limit=None # โ
add this
#concurrency_id="generation" # โ
optional but good practice
)
# ---------------- Templates --------------------
if examples_db.MODE_EXAMPLES.get(mode):
gr.Examples(
examples=examples_db.MODE_EXAMPLES.get(mode, []),
inputs=[input_image, prompt_box, output_image],
label="Presets (Input / Prompt / Output)",
examples_per_page=6,
)
if __name__ == "__main__":
demo.launch()
|