Spaces:
Running
on
Zero
Running
on
Zero
add_gradio_ui
#1
by
ultimaxxl
- opened
app.py
CHANGED
@@ -1,7 +1,323 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import base64
|
3 |
+
import io
|
4 |
+
from typing import TypedDict
|
5 |
+
import requests
|
6 |
import gradio as gr
|
7 |
+
from PIL import Image
|
8 |
|
9 |
+
# Read Baseten configuration from environment variables.
|
10 |
+
BTEN_API_KEY = os.getenv("API_KEY")
|
11 |
+
URL = os.getenv("URL")
|
12 |
|
13 |
+
def image_to_base64(image: Image.Image) -> str:
|
14 |
+
"""Convert a PIL image to a base64-encoded PNG string."""
|
15 |
+
with io.BytesIO() as buffer:
|
16 |
+
image.save(buffer, format="PNG")
|
17 |
+
return base64.b64encode(buffer.getvalue()).decode("utf-8")
|
18 |
+
|
19 |
+
|
20 |
+
def ensure_image(img) -> Image.Image:
|
21 |
+
"""
|
22 |
+
Ensure the input is a PIL Image.
|
23 |
+
If it's already a PIL Image, return it.
|
24 |
+
If it's a string (file path), open it.
|
25 |
+
If it's a dict with a "name" key, open the file at that path.
|
26 |
+
"""
|
27 |
+
if isinstance(img, Image.Image):
|
28 |
+
return img
|
29 |
+
elif isinstance(img, str):
|
30 |
+
return Image.open(img)
|
31 |
+
elif isinstance(img, dict) and "name" in img:
|
32 |
+
return Image.open(img["name"])
|
33 |
+
else:
|
34 |
+
raise ValueError("Cannot convert input to a PIL Image.")
|
35 |
+
|
36 |
+
|
37 |
+
def call_baseten_generate(
|
38 |
+
image: Image.Image,
|
39 |
+
prompt: str,
|
40 |
+
steps: int,
|
41 |
+
strength: float,
|
42 |
+
height: int,
|
43 |
+
width: int,
|
44 |
+
lora_name: str,
|
45 |
+
remove_bg: bool,
|
46 |
+
) -> Image.Image | None:
|
47 |
+
"""
|
48 |
+
Call the Baseten /predict endpoint with provided parameters and return the generated image.
|
49 |
+
"""
|
50 |
+
image = ensure_image(image)
|
51 |
+
b64_image = image_to_base64(image)
|
52 |
+
payload = {
|
53 |
+
"image": b64_image,
|
54 |
+
"prompt": prompt,
|
55 |
+
"steps": steps,
|
56 |
+
"strength": strength,
|
57 |
+
"height": height,
|
58 |
+
"width": width,
|
59 |
+
"lora_name": lora_name,
|
60 |
+
"bgrm": remove_bg,
|
61 |
+
}
|
62 |
+
if not BTEN_API_KEY:
|
63 |
+
headers = {"Authorization": f"Api-Key {os.getenv('API_KEY')}"}
|
64 |
+
else:
|
65 |
+
headers = {"Authorization": f"Api-Key {BTEN_API_KEY}"}
|
66 |
+
try:
|
67 |
+
if not URL:
|
68 |
+
raise ValueError("The URL environment variable is not set.")
|
69 |
+
|
70 |
+
response = requests.post(URL, headers=headers, json=payload)
|
71 |
+
if response.status_code == 200:
|
72 |
+
data = response.json()
|
73 |
+
gen_b64 = data.get("generated_image", None)
|
74 |
+
if gen_b64:
|
75 |
+
return Image.open(io.BytesIO(base64.b64decode(gen_b64)))
|
76 |
+
else:
|
77 |
+
return None
|
78 |
+
else:
|
79 |
+
print(f"Error: HTTP {response.status_code}\n{response.text}")
|
80 |
+
return None
|
81 |
+
except Exception as e:
|
82 |
+
print(f"Error: {e}")
|
83 |
+
return None
|
84 |
+
|
85 |
+
|
86 |
+
# Mode defaults for each tab.
|
87 |
+
|
88 |
+
Mode = TypedDict(
|
89 |
+
"Mode",
|
90 |
+
{
|
91 |
+
"model": str,
|
92 |
+
"prompt": str,
|
93 |
+
"default_strength": float,
|
94 |
+
"default_height": int,
|
95 |
+
"default_width": int,
|
96 |
+
"models": list[str],
|
97 |
+
},
|
98 |
+
)
|
99 |
+
|
100 |
+
MODE_DEFAULTS: dict[str, Mode] = {
|
101 |
+
"Subject Generation": {
|
102 |
+
"model": "subject_99000_512",
|
103 |
+
"prompt": "A detailed portrait with soft lighting",
|
104 |
+
"default_strength": 1.2,
|
105 |
+
"default_height": 512,
|
106 |
+
"default_width": 512,
|
107 |
+
"models": [
|
108 |
+
"zendsd_512_146000",
|
109 |
+
"subject_99000_512",
|
110 |
+
"zen_variation_10000",
|
111 |
+
"zen_pers_11000",
|
112 |
+
"zen_26000_512",
|
113 |
+
"zen_22000_1280",
|
114 |
+
"zen_20000_1360",
|
115 |
+
"zen_14000_512",
|
116 |
+
"zen_1360_31000",
|
117 |
+
],
|
118 |
+
},
|
119 |
+
"Background Generation": {
|
120 |
+
"model": "gen_back_3000_1024",
|
121 |
+
"prompt": "A vibrant background with dynamic lighting and textures",
|
122 |
+
"default_strength": 1.2,
|
123 |
+
"default_height": 1024,
|
124 |
+
"default_width": 1024,
|
125 |
+
"models": [
|
126 |
+
"bgwlight_15000_1024",
|
127 |
+
"rmgb_12000_1024",
|
128 |
+
"bg_canny_58000_1024",
|
129 |
+
"gen_back_3000_1024",
|
130 |
+
"gen_back_7000_1024",
|
131 |
+
"gen_bckgnd_18000_512",
|
132 |
+
"gen_bckgnd_18000_512",
|
133 |
+
"loose_25000_512",
|
134 |
+
"looser_23000_1024",
|
135 |
+
"looser_bg_gen_21000_1280",
|
136 |
+
"old_looser_46000_1024",
|
137 |
+
"relight_bg_gen_31000_1024",
|
138 |
+
"rmbg_loose_19000_1024",
|
139 |
+
"rmgb_12000_1024",
|
140 |
+
],
|
141 |
+
},
|
142 |
+
"Canny": {
|
143 |
+
"model": "canny_21000_1024",
|
144 |
+
"prompt": "A futuristic cityscape with neon lights",
|
145 |
+
"default_strength": 1.2,
|
146 |
+
"default_height": 1024,
|
147 |
+
"default_width": 1024,
|
148 |
+
"models": ["canny_21000_1024"],
|
149 |
+
},
|
150 |
+
"Depth": {
|
151 |
+
"model": "depth_9800_1024",
|
152 |
+
"prompt": "A scene with pronounced depth and perspective",
|
153 |
+
"default_strength": 1.2,
|
154 |
+
"default_height": 1024,
|
155 |
+
"default_width": 1024,
|
156 |
+
"models": [
|
157 |
+
"depth_9800_1024",
|
158 |
+
],
|
159 |
+
},
|
160 |
+
"Deblurring": {
|
161 |
+
"model": "slight_deblurr_18000",
|
162 |
+
"prompt": "A scene with pronounced depth and perspective",
|
163 |
+
"default_strength": 1.2,
|
164 |
+
"default_height": 1024,
|
165 |
+
"default_width": 1024,
|
166 |
+
"models": ["slight_deblurr_18000", "deblurr_1024_10000"],
|
167 |
+
},
|
168 |
+
}
|
169 |
+
|
170 |
+
|
171 |
+
header = """
|
172 |
+
# 🌍 ZenCtrl / FLUX
|
173 |
+
<div style="text-align: center; display: flex; justify-content: left; gap: 5px;">
|
174 |
+
<a href="https://huggingface.co/fotographerai/zenctrl_tools">
|
175 |
+
<img src="https://img.shields.io/badge/🤗-Model-ffbd45.svg" alt="Weights">
|
176 |
+
</a>
|
177 |
+
<a href="https://github.com/FotographerAI/ZenCtrl">
|
178 |
+
<img src="https://img.shields.io/badge/GitHub-Code-blue.svg?logo=github" alt="GitHub">
|
179 |
+
</a>
|
180 |
+
<a href="https://fotographer.ai/">
|
181 |
+
<img src="https://img.shields.io/badge/LP-Visit-9cf" alt="LP">
|
182 |
+
</a>
|
183 |
+
<a href="https://x.com/fotographerait">
|
184 |
+
<img src="https://img.shields.io/twitter/follow/FotographerAI?style=social" alt="Twitter">
|
185 |
+
</a>
|
186 |
+
<a href="https://discord.com/invite/b9RuYQ3F8k">
|
187 |
+
<img src="https://img.shields.io/badge/Discord-Join-7289da.svg?logo=discord" alt="Discord">
|
188 |
+
</a>
|
189 |
+
</div>
|
190 |
+
"""
|
191 |
+
|
192 |
+
defaults = MODE_DEFAULTS["Subject Generation"]
|
193 |
+
|
194 |
+
|
195 |
+
with gr.Blocks(title="🌍 ZenCtrl") as demo:
|
196 |
+
gr.Markdown(header)
|
197 |
+
gr.Markdown(
|
198 |
+
"""
|
199 |
+
# ZenCtrl Demo
|
200 |
+
[WIP] One Agent to Generate multi-view, diverse-scene, and task-specific high-resolution images from a single subject image—without fine-tuning.
|
201 |
+
We are first releasing some of the task specific weights and will release the codes soon.
|
202 |
+
The goal is to unify all of the visual content generation tasks with a single LLM...
|
203 |
+
|
204 |
+
**Modes:**
|
205 |
+
- **Subject Generation:** Focuses on generating detailed subject portraits.
|
206 |
+
- **Background Generation:** Creates dynamic, vibrant backgrounds:
|
207 |
+
You can generate part of the image from sketch while keeping part of it as it is.
|
208 |
+
- **Canny:** Emphasizes strong edge detection.
|
209 |
+
- **Depth:** Produces images with realistic depth and perspective.
|
210 |
+
|
211 |
+
For more details, shoot us a message on discord.
|
212 |
+
"""
|
213 |
+
)
|
214 |
+
with gr.Tabs():
|
215 |
+
for mode in MODE_DEFAULTS:
|
216 |
+
with gr.Tab(mode):
|
217 |
+
defaults = MODE_DEFAULTS[mode]
|
218 |
+
gr.Markdown(f"### {mode} Mode")
|
219 |
+
gr.Markdown(f"**Default Model:** {defaults['model']}")
|
220 |
+
|
221 |
+
with gr.Row():
|
222 |
+
with gr.Column(scale=2, min_width=370):
|
223 |
+
input_image = gr.Image(
|
224 |
+
label="Upload Image",
|
225 |
+
type="pil",
|
226 |
+
scale=3,
|
227 |
+
height=370,
|
228 |
+
min_width=100,
|
229 |
+
)
|
230 |
+
generate_button = gr.Button("Generate")
|
231 |
+
with gr.Blocks(title="Options"):
|
232 |
+
model_dropdown = gr.Dropdown(
|
233 |
+
label="Model",
|
234 |
+
choices=defaults["models"],
|
235 |
+
value=defaults["model"],
|
236 |
+
interactive=True,
|
237 |
+
)
|
238 |
+
remove_bg_checkbox = gr.Checkbox(
|
239 |
+
label="Remove Background", value=False
|
240 |
+
)
|
241 |
+
|
242 |
+
with gr.Column(scale=2):
|
243 |
+
output_image = gr.Image(
|
244 |
+
label="Generated Image",
|
245 |
+
type="pil",
|
246 |
+
height=573,
|
247 |
+
scale=4,
|
248 |
+
min_width=100,
|
249 |
+
)
|
250 |
+
|
251 |
+
gr.Markdown("#### Prompt")
|
252 |
+
prompt_box = gr.Textbox(
|
253 |
+
label="Prompt", value=defaults["prompt"], lines=2
|
254 |
+
)
|
255 |
+
|
256 |
+
# Wrap generation parameters in an Accordion for collapsible view.
|
257 |
+
with gr.Accordion("Generation Parameters", open=False):
|
258 |
+
with gr.Row():
|
259 |
+
step_slider = gr.Slider(
|
260 |
+
minimum=2, maximum=28, value=2, step=2, label="Steps"
|
261 |
+
)
|
262 |
+
strength_slider = gr.Slider(
|
263 |
+
minimum=0.5,
|
264 |
+
maximum=2.0,
|
265 |
+
value=defaults["default_strength"],
|
266 |
+
step=0.1,
|
267 |
+
label="Strength",
|
268 |
+
)
|
269 |
+
with gr.Row():
|
270 |
+
height_slider = gr.Slider(
|
271 |
+
minimum=512,
|
272 |
+
maximum=1360,
|
273 |
+
value=defaults["default_height"],
|
274 |
+
step=1,
|
275 |
+
label="Height",
|
276 |
+
)
|
277 |
+
width_slider = gr.Slider(
|
278 |
+
minimum=512,
|
279 |
+
maximum=1360,
|
280 |
+
value=defaults["default_width"],
|
281 |
+
step=1,
|
282 |
+
label="Width",
|
283 |
+
)
|
284 |
+
|
285 |
+
def on_generate_click(
|
286 |
+
model_name,
|
287 |
+
prompt,
|
288 |
+
steps,
|
289 |
+
strength,
|
290 |
+
height,
|
291 |
+
width,
|
292 |
+
remove_bg,
|
293 |
+
image,
|
294 |
+
):
|
295 |
+
return call_baseten_generate(
|
296 |
+
image,
|
297 |
+
prompt,
|
298 |
+
steps,
|
299 |
+
strength,
|
300 |
+
height,
|
301 |
+
width,
|
302 |
+
model_name,
|
303 |
+
remove_bg,
|
304 |
+
)
|
305 |
+
|
306 |
+
generate_button.click(
|
307 |
+
fn=on_generate_click,
|
308 |
+
inputs=[
|
309 |
+
model_dropdown,
|
310 |
+
prompt_box,
|
311 |
+
step_slider,
|
312 |
+
strength_slider,
|
313 |
+
height_slider,
|
314 |
+
width_slider,
|
315 |
+
remove_bg_checkbox,
|
316 |
+
input_image,
|
317 |
+
],
|
318 |
+
outputs=[output_image],
|
319 |
+
)
|
320 |
+
|
321 |
+
|
322 |
+
if __name__ == "__main__":
|
323 |
+
demo.launch()
|