File size: 1,350 Bytes
6dae430
02ce4ee
19c180b
6dae430
19c180b
6dae430
02ce4ee
6dae430
 
 
19c180b
6dae430
 
 
 
02ce4ee
19c180b
 
 
 
 
 
 
6dae430
 
19c180b
6dae430
19c180b
 
 
 
6dae430
 
19c180b
 
6dae430
19c180b
 
6dae430
 
 
 
 
19c180b
02ce4ee
6dae430
 
 
 
 
 
 
 
 
 
19c180b
6dae430
19c180b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import gradio as gr
import os
from huggingface_hub import InferenceClient

client = InferenceClient("explorewithai/Loxa-1.6B")

meo_system = os.environ.get("MEO")

def respond(
    message,
    history: list[tuple[str, str]],
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": meo_system}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response


demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch()