explorewithai's picture
Update app.py
9afc14b verified
raw
history blame
1.78 kB
import gradio as gr
import os
from transformers import pipeline, AutoTokenizer
# Load the tokenizer and model using the pipeline
pipe = pipeline("text-generation", model="explorewithai/Loxa-4B", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("explorewithai/Loxa-4B")
# Get the system prompt from environment variables
meo_system = os.environ.get("MEO")
def respond(
message,
history,
max_tokens,
temperature,
top_p,
):
# Format the messages for the pipeline
messages = [{"role": "system", "content": meo_system}]
for user_msg, bot_msg in history:
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": bot_msg})
messages.append({"role": "user", "content": message})
# Generate the prompt using the tokenizer's chat template
prompt = tokenizer.apply_chat_template(messages, tokenize=False)
# Generate the response using the pipeline
outputs = pipe(
prompt,
max_new_tokens=max_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
return_full_text=False # We only want the generated part
)
# Extract the generated text
response = outputs[0]['generated_text']
return response
# Create the Gradio interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()