Spaces:
Running
Running
import gradio as gr | |
import os | |
from transformers import pipeline, AutoTokenizer | |
# Load the tokenizer and model using the pipeline | |
pipe = pipeline("text-generation", model="explorewithai/Loxa-4B", trust_remote_code=True) | |
tokenizer = AutoTokenizer.from_pretrained("explorewithai/Loxa-4B") | |
# Get the system prompt from environment variables | |
meo_system = os.environ.get("MEO") | |
def respond( | |
message, | |
history, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# Format the messages for the pipeline | |
messages = [{"role": "system", "content": meo_system}] | |
for user_msg, bot_msg in history: | |
messages.append({"role": "user", "content": user_msg}) | |
messages.append({"role": "assistant", "content": bot_msg}) | |
messages.append({"role": "user", "content": message}) | |
# Generate the prompt using the tokenizer's chat template | |
prompt = tokenizer.apply_chat_template(messages, tokenize=False) | |
# Generate the response using the pipeline | |
outputs = pipe( | |
prompt, | |
max_new_tokens=max_tokens, | |
do_sample=True, | |
temperature=temperature, | |
top_p=top_p, | |
return_full_text=False # We only want the generated part | |
) | |
# Extract the generated text | |
response = outputs[0]['generated_text'] | |
return response | |
# Create the Gradio interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |