Spaces:
Running
Running
| import gradio as gr | |
| import os | |
| from transformers import pipeline, AutoTokenizer | |
| # Load the tokenizer and model using the pipeline | |
| pipe = pipeline("text-generation", model="explorewithai/Loxa-4B", trust_remote_code=True) | |
| tokenizer = AutoTokenizer.from_pretrained("explorewithai/Loxa-4B") | |
| # Get the system prompt from environment variables | |
| meo_system = os.environ.get("MEO") | |
| def respond( | |
| message, | |
| history, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| # Format the messages for the pipeline | |
| messages = [{"role": "system", "content": meo_system}] | |
| for user_msg, bot_msg in history: | |
| messages.append({"role": "user", "content": user_msg}) | |
| messages.append({"role": "assistant", "content": bot_msg}) | |
| messages.append({"role": "user", "content": message}) | |
| # Generate the prompt using the tokenizer's chat template | |
| prompt = tokenizer.apply_chat_template(messages, tokenize=False) | |
| # Generate the response using the pipeline | |
| outputs = pipe( | |
| prompt, | |
| max_new_tokens=max_tokens, | |
| do_sample=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| return_full_text=False # We only want the generated part | |
| ) | |
| # Extract the generated text | |
| response = outputs[0]['generated_text'] | |
| return response | |
| # Create the Gradio interface | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)", | |
| ), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |