Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import gradio as gr | |
from data_loader import CATEGORIES, DESCRIPTION_HTML, CARDS | |
from visualization import ( | |
get_performance_chart, | |
get_performance_cost_chart, | |
) | |
from utils import ( | |
get_rank_badge, | |
get_score_bar, | |
get_type_badge, | |
) | |
def filter_leaderboard(df, model_type, category, sort_by): | |
filtered_df = df.copy() | |
if model_type != "All": | |
filtered_df = filtered_df[filtered_df["Model Type"].str.strip() == model_type] | |
dataset_columns = CATEGORIES.get(category, ["Model Avg"]) | |
filtered_df["Category Score"] = filtered_df[dataset_columns].mean(axis=1) | |
if sort_by == "Performance": | |
filtered_df = filtered_df.sort_values(by="Category Score", ascending=False) | |
else: | |
filtered_df = filtered_df.sort_values(by="IO Cost", ascending=True) | |
filtered_df["Rank"] = range(1, len(filtered_df) + 1) | |
perf_chart = get_performance_chart(filtered_df, category) | |
cost_chart = get_performance_cost_chart(filtered_df, category) | |
# Generate styled table HTML | |
table_html = f""" | |
<style> | |
@media (prefers-color-scheme: dark) {{ | |
:root {{ | |
--bg-color: #1a1b1e; | |
--text-color: #ffffff; | |
--border-color: #2d2e32; | |
--hover-bg: #2d2e32; | |
--note-bg: #2d2e32; | |
--note-text: #a1a1aa; | |
--accent-blue: #60A5FA; | |
--accent-purple: #A78BFA; | |
--accent-pink: #F472B6; | |
--score-bg: rgba(255, 255, 255, 0.1); | |
}} | |
}} | |
@media (prefers-color-scheme: light) {{ | |
:root {{ | |
--bg-color: #ffffff; | |
--text-color: #000000; | |
--border-color: #e5e7eb; | |
--hover-bg: #f3f4f6; | |
--note-bg: #f3f4f6; | |
--note-text: #4b5563; | |
--accent-blue: #3B82F6; | |
--accent-purple: #8B5CF6; | |
--accent-pink: #EC4899; | |
--score-bg: rgba(0, 0, 0, 0.1); | |
}} | |
}} | |
.dark-table-container {{ | |
background: var(--bg-color); | |
border-radius: 12px; | |
padding: 1px; | |
margin: 20px 0; | |
}} | |
.dark-styled-table {{ | |
width: 100%; | |
border-collapse: collapse; | |
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, sans-serif; | |
background: var(--bg-color); | |
color: var(--text-color); | |
}} | |
.dark-styled-table thead {{ | |
position: sticky; | |
top: 0; | |
background: var(--bg-color); | |
z-index: 1; | |
}} | |
.dark-styled-table th {{ | |
padding: 16px; | |
text-align: left; | |
font-weight: 500; | |
color: var(--text-color); | |
border-bottom: 1px solid var(--border-color); | |
}} | |
.dark-styled-table td {{ | |
padding: 16px; | |
border-bottom: 1px solid var(--border-color); | |
color: var(--text-color); | |
}} | |
.dark-styled-table tbody tr:hover {{ | |
background: var(--hover-bg); | |
}} | |
.model-cell {{ | |
font-weight: 500; | |
}} | |
.score-cell {{ | |
font-weight: 500; | |
}} | |
.note-box {{ | |
margin-top: 20px; | |
padding: 16px; | |
background: var(--note-bg); | |
border-radius: 8px; | |
color: var(--note-text); | |
}} | |
</style> | |
<div class="note-box"> | |
<p style="margin: 0; font-size: 1em;"> | |
Note: API pricing for sorting by cost uses a 3-to-1 input/output ratio calculation. DeepSeek V3 and R1 were excluded from rankings due to limited function support. Pricing for Gemini models shown reflects <a href="https://cloud.google.com/vertex-ai/generative-ai/pricing">Vertex AI</a>. Google AI Studio offers <a href="https://ai.google.dev/gemini-api/docs/pricing">Gemini API Access</a> at a lower cost with an API Key. | |
</p> | |
</div> | |
<div class="dark-table-container"> | |
<table class="dark-styled-table"> | |
<thead> | |
<tr> | |
<th>Rank</th> | |
<th>Model</th> | |
<th>Type</th> | |
<th>Vendor</th> | |
<th>Cost (I/O)</th> | |
<th>Avg Category Score (TSQ)</th> | |
</tr> | |
</thead> | |
<tbody> | |
""" | |
for _, row in filtered_df.iterrows(): | |
table_html += f""" | |
<tr> | |
<td>{get_rank_badge(row['Rank'])}</td> | |
<td class="model-cell">{row['Model']}</td> | |
<td>{get_type_badge(row['Model Type'])}</td> | |
<td class="vendor-cell">{row['Vendor']}</td> | |
<td>${row['Input cost per million token']:.2f}/${row['Output cost per million token']:.2f}</td> | |
<td class="score-cell">{get_score_bar(row['Category Score'])}</td> | |
</tr> | |
""" | |
return table_html, perf_chart, cost_chart | |
def create_leaderboard_tab(df, CATEGORIES, METHODOLOGY, HEADER_CONTENT, CARDS): | |
with gr.Tab("Leaderboard"): | |
gr.HTML(HEADER_CONTENT + CARDS) | |
gr.HTML(DESCRIPTION_HTML) | |
# Filters row | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=1): | |
model_type = gr.Dropdown( | |
choices=["All"] + df["Model Type"].unique().tolist(), | |
value="All", | |
label="Model Type", | |
) | |
with gr.Column(scale=1): | |
category = gr.Dropdown( | |
choices=list(CATEGORIES.keys()), | |
value=list(CATEGORIES.keys())[0], | |
label="Category", | |
) | |
with gr.Column(scale=1): | |
sort_by = gr.Radio( | |
choices=["Performance", "Cost"], | |
value="Performance", | |
label="Sort by", | |
) | |
# Content | |
output = gr.HTML() | |
plot1 = gr.Plot() | |
plot2 = gr.Plot() | |
gr.HTML( | |
"""<div class="note-box"> | |
<p style="margin: 0; font-size: 1em;"> | |
Note: API pricing for sorting by cost uses a 3-to-1 input/output ratio calculation. | |
</p> | |
</div>""" | |
) | |
gr.HTML(METHODOLOGY) | |
for input_comp in [model_type, category, sort_by]: | |
input_comp.change( | |
fn=lambda m, c, s: filter_leaderboard(df, m, c, s), | |
inputs=[model_type, category, sort_by], | |
outputs=[output, plot1, plot2], | |
) | |
return output, plot1, plot2 | |