from A_Preprocess import load_pdf_data, preprocess_data | |
from E_Model_utils import load_model, get_embeddings | |
from E_Faiss_utils import save_embeddings | |
# Load and preprocess data | |
data_file_path = r'C:\Users\serban.tica\Documents\tobi_llm_intent_recognition\data\Pager_Intents_Cleaned.csv' | |
data = load_pdf_data(data_file_path) | |
#data = preprocess_data(data) | |
# Models to evaluate | |
models = {"multilingual-e5-large":"intfloat/multilingual-e5-large"} | |
#"multilingual-e5-small":"intfloat/multilingual-e5-small", "all-MiniLM-L6-v2": "sentence-transformers/all-MiniLM-L6-v2", "all-mpnet-base-v2":"sentence-transformers/all-mpnet-base-v2" | |
#"bert-base-nli-mean-tokens":"sentence-transformers/bert-base-nli-mean-tokens", #"all-MiniLM-L6-v2": "sentence-transformers/all-MiniLM-L6-v2", "all-distilroberta-v1":"sentence-transformers/all-distilroberta-v1"} | |
# 'sentence-transformers/paraphrase-multilingual-mpnet-base-v2' | |
# "all-mpnet-base-v2":"sentence-transformers/all-mpnet-base-v2", | |
# "bert-base-nli":"sentence-transformers/bert-base-nli-mean-tokens", | |
# "all-MiniLM-L6-v2": "sentence-transformers/all-MiniLM-L6-v2", | |
# "all-distilroberta-v1":"sentence-transformers/all-distilroberta-v1" | |
# "bert-base-romanian-cased-v1": "sentence-transformers/bert-base-romanian-cased-v1", | |
# "bert-base-romanian-uncased-v1": "sentence-transformers/dumitrescustefan/bert-base-romanian-uncased-v1", | |
#"mBERT": "bert-base-multilingual-cased", "XLM-R": "xlm-roberta-base", "Romanian BERT": "dumitrescustefan/bert-base-romanian-cased-v1", "dumitrescustefan/bert-base-romanian-uncased-v1": "dumitrescustefan/bert-base-romanian-uncased-v1" | |
# Generate and save embeddings for each model, "xlm-r-distilroberta-base-paraphrase-v1" | |
for model_name, model_path in models.items(): | |
print(f"Processing model: {model_name}") | |
model = load_model(model_path) | |
texts = data['utterance'].tolist() | |
embeddings = get_embeddings(model, texts) | |
save_embeddings(embeddings, file_name=f"embeddings/{model_name}_vector_db.index") | |