Spaces:
Paused
Paused
import os | |
from glob import glob | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
import torch | |
from torchvision import transforms | |
import gradio as gr | |
import spaces | |
from gradio_imageslider import ImageSlider | |
torch.set_float32_matmul_precision('high') | |
torch.jit.script = lambda f: f | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
def array_to_pil_image(image, size=(1024, 1024)): | |
image = cv2.resize(image, size, interpolation=cv2.INTER_LINEAR) | |
image = Image.fromarray(image).convert('RGB') | |
return image | |
class ImagePreprocessor(): | |
def __init__(self, resolution=(1024, 1024)) -> None: | |
self.transform_image = transforms.Compose([ | |
# transforms.Resize(resolution), # 1. keep consistent with the cv2.resize used in training 2. redundant with that in path_to_image() | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
]) | |
def proc(self, image): | |
image = self.transform_image(image) | |
return image | |
from transformers import AutoModelForImageSegmentation | |
birefnet = AutoModelForImageSegmentation.from_pretrained('zhengpeng7/BiRefNet', trust_remote_code=True) | |
birefnet.to(device) | |
birefnet.eval() | |
# def predict(image_1, image_2): | |
# images = [image_1, image_2] | |
def predict(image, resolution): | |
resolution = f"{image.shape[1]}x{image.shape[0]}" if resolution == '' else resolution | |
# Image is a RGB numpy array. | |
resolution = [int(int(reso)//32*32) for reso in resolution.strip().split('x')] | |
images = [image] | |
image_shapes = [image.shape[:2] for image in images] | |
images = [array_to_pil_image(image, resolution) for image in images] | |
image_preprocessor = ImagePreprocessor(resolution=resolution) | |
images_proc = [] | |
for image in images: | |
images_proc.append(image_preprocessor.proc(image)) | |
images_proc = torch.cat([image_proc.unsqueeze(0) for image_proc in images_proc]) | |
with torch.no_grad(): | |
scaled_preds_tensor = birefnet(images_proc.to(device))[-1].sigmoid() # BiRefNet needs an sigmoid activation outside the forward. | |
preds = [] | |
for image_shape, pred_tensor in zip(image_shapes, scaled_preds_tensor): | |
if device == 'cuda': | |
pred_tensor = pred_tensor.cpu() | |
preds.append(torch.nn.functional.interpolate(pred_tensor.unsqueeze(0), size=image_shape, mode='bilinear', align_corners=True).squeeze().numpy()) | |
image_preds = [] | |
for image, pred in zip(images, preds): | |
image = image.resize(pred.shape[::-1]) | |
pred = np.repeat(np.expand_dims(pred, axis=-1), 3, axis=-1) | |
image_preds.append((pred * image).astype(np.uint8)) | |
return image, image_preds[0] | |
examples = [[_] for _ in glob('materials/examples/*')][:] | |
# Add the option of resolution in a text box. | |
for idx_example, example in enumerate(examples): | |
examples[idx_example].append('1024x1024') | |
examples.append(examples[-1].copy()) | |
examples[-1][1] = '512x512' | |
demo = gr.Interface( | |
fn=predict, | |
inputs=['image', gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `512x512`. Higher resolutions can be much slower for inference.", label="Resolution")], | |
outputs=ImageSlider(), | |
examples=examples, | |
title='Online demo for `Bilateral Reference for High-Resolution Dichotomous Image Segmentation`', | |
description=('Upload a picture, our model will give you the binary maps of the highly accurate segmentation of the salient objects in it. :)' | |
'\nThe resolution used in our training was `1024x1024`, which is too much burden for the huggingface free spaces like this one (cost nearly 40s). Please set resolution as more than `768x768` for images with many texture details to obtain good results!\n Ours codes can be found at https://github.com/ZhengPeng7/BiRefNet.') | |
) | |
demo.launch(debug=True) | |