Spaces:
Running
on
Zero
Running
on
Zero
from dataclasses import dataclass | |
import torch | |
from torch import Tensor, nn | |
from concept_attention.flux.src.flux.modules.layers import (DoubleStreamBlock, EmbedND, LastLayer, | |
MLPEmbedder, SingleStreamBlock, | |
timestep_embedding) | |
from concept_attention.modified_double_stream_block import ModifiedDoubleStreamBlock | |
from concept_attention.modified_single_stream_block import ModifiedSingleStreamBlock | |
class FluxParams: | |
in_channels: int | |
vec_in_dim: int | |
context_in_dim: int | |
hidden_size: int | |
mlp_ratio: float | |
num_heads: int | |
depth: int | |
depth_single_blocks: int | |
axes_dim: list[int] | |
theta: int | |
qkv_bias: bool | |
guidance_embed: bool | |
class ModifiedFluxDiT(nn.Module): | |
""" | |
Transformer model for flow matching on sequences. | |
""" | |
def __init__(self, params: FluxParams, attention_block_class=ModifiedDoubleStreamBlock): | |
super().__init__() | |
self.params = params | |
self.in_channels = params.in_channels | |
self.out_channels = self.in_channels | |
if params.hidden_size % params.num_heads != 0: | |
raise ValueError( | |
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}" | |
) | |
pe_dim = params.hidden_size // params.num_heads | |
if sum(params.axes_dim) != pe_dim: | |
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}") | |
self.hidden_size = params.hidden_size | |
self.num_heads = params.num_heads | |
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim) | |
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True) | |
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) | |
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size) | |
self.guidance_in = ( | |
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity() | |
) | |
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size) | |
self.double_blocks = nn.ModuleList([ | |
attention_block_class( | |
self.hidden_size, | |
self.num_heads, | |
mlp_ratio=params.mlp_ratio, | |
qkv_bias=params.qkv_bias, | |
) | |
for _ in range(params.depth) | |
]) | |
self.single_blocks = nn.ModuleList([ | |
ModifiedSingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio) | |
for _ in range(params.depth_single_blocks) | |
]) | |
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels) | |
def forward( | |
self, | |
img: Tensor, | |
img_ids: Tensor, | |
txt: Tensor, | |
txt_ids: Tensor, | |
concepts: Tensor, | |
concept_ids: Tensor, | |
concept_vec: Tensor, | |
timesteps: Tensor, | |
y: Tensor, | |
guidance: Tensor | None = None, | |
stop_after_multimodal_attentions: bool = False, | |
edit_metadata=None, | |
iteration=None, | |
joint_attention_kwargs=None, | |
**kwargs | |
) -> Tensor: | |
assert concept_vec is not None, "Concept vectors must be provided for this implementation." | |
if img.ndim != 3 or txt.ndim != 3: | |
raise ValueError("Input img and txt tensors must have 3 dimensions.") | |
# running on sequences img | |
img = self.img_in(img) | |
vec = self.time_in(timestep_embedding(timesteps, 256)) | |
if self.params.guidance_embed: | |
if guidance is None: | |
raise ValueError("Didn't get guidance strength for guidance distilled model.") | |
vec = vec + self.guidance_in(timestep_embedding(guidance, 256)) | |
vec = vec + self.vector_in(y) | |
txt = self.txt_in(txt) | |
ids = torch.cat((txt_ids, img_ids), dim=1) | |
pe = self.pe_embedder(ids) | |
# Compute positional encodings | |
ids_with_concepts = torch.cat((concept_ids, img_ids), dim=1) | |
pe_with_concepts = self.pe_embedder(ids_with_concepts) | |
################ Process concept vectors ################ | |
original_concept_vec = concept_vec | |
concept_vec = self.time_in(timestep_embedding(timesteps, 256)) | |
if self.params.guidance_embed: | |
if guidance is None: | |
raise ValueError("Didn't get guidance strength for guidance distilled model.") | |
concept_vec = concept_vec + self.guidance_in(timestep_embedding(guidance, 256)) | |
concept_vec = concept_vec + self.vector_in(original_concept_vec) | |
concepts = self.txt_in(concepts) | |
############## Modify the double blocks to also return concept vectors ############## | |
all_cross_attention_maps = [] | |
all_concept_attention_maps = [] | |
for block in self.double_blocks: | |
img, txt, concepts, cross_attention_maps, concept_attention_maps = block( | |
img=img, | |
txt=txt, | |
vec=vec, | |
pe=pe, | |
concepts=concepts, | |
concept_vec=concept_vec, | |
concept_pe=pe_with_concepts, | |
edit_metadata=edit_metadata, | |
iteration=iteration, | |
joint_attention_kwargs=joint_attention_kwargs | |
) | |
all_cross_attention_maps.append(cross_attention_maps) | |
all_concept_attention_maps.append(concept_attention_maps) | |
all_concept_attention_maps = torch.stack(all_concept_attention_maps, dim=0) | |
all_cross_attention_maps = torch.stack(all_cross_attention_maps, dim=0) | |
##################################################################################### | |
img = torch.cat((txt, img), 1) | |
# Speed up segmentation by not generating the full image | |
if stop_after_multimodal_attentions: | |
return None, all_cross_attention_maps, all_concept_attention_maps | |
# Do the single blocks now | |
for block in self.single_blocks: | |
img = block(img, vec=vec, pe=pe) | |
img = img[:, txt.shape[1] :, ...] | |
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels) | |
return img, all_cross_attention_maps, all_concept_attention_maps | |