Spaces:
Sleeping
Sleeping
import os | |
import time | |
import torch | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
import threading | |
import queue | |
import multiprocessing | |
# First check if GPU is available for maximum speed | |
has_gpu = torch.cuda.is_available() | |
gpu_name = torch.cuda.get_device_name(0) if has_gpu else "No GPU" | |
print(f"GPU available: {has_gpu} - {gpu_name}") | |
# Download model files | |
def get_model_path(repo_id, filename): | |
print(f"Obtaining {filename}...") | |
return hf_hub_download(repo_id=repo_id, filename=filename) | |
base_model_path = get_model_path( | |
"johnpaulbin/articulate-11-expspanish-base-merged-Q8_0-GGUF", | |
"articulate-11-expspanish-base-merged-q8_0.gguf" | |
) | |
adapter_path = get_model_path( | |
"johnpaulbin/articulate-V1-Q8_0-GGUF", | |
"articulate-V1-q8_0.gguf" | |
) | |
# Set up optimized environment variables for llama-cpp-python | |
os.environ["LLAMA_CUBLAS"] = "1" if has_gpu else "0" | |
os.environ["LLAMA_CLBLAST"] = "0" # Disable OpenCL | |
# For CPU: Use AVX2/AVX512/AVX-VNNI instruction sets if available | |
os.environ["LLAMA_AVX"] = "1" | |
os.environ["LLAMA_AVX2"] = "1" | |
os.environ["LLAMA_F16"] = "1" # Use FP16 where available | |
# Determine the most optimized backend | |
if has_gpu: | |
try: | |
from llama_cpp_python.llama_cpp.llama import Llama as GPULlama | |
LlamaClass = GPULlama | |
print("Using GPU-accelerated llama-cpp-python") | |
n_gpu_layers = -1 # Use all layers on GPU | |
except ImportError: | |
from llama_cpp import Llama | |
LlamaClass = Llama | |
print("Using standard llama-cpp-python with GPU acceleration") | |
n_gpu_layers = -1 # Use all layers on GPU | |
else: | |
from llama_cpp import Llama | |
LlamaClass = Llama | |
print("Using CPU-only llama-cpp-python") | |
n_gpu_layers = 0 | |
# Cache for translations | |
translation_cache = {} | |
MAX_CACHE_SIZE = 1000 | |
# Pre-compute common translations | |
COMMON_PHRASES = { | |
"English to Spanish": [ | |
"Hello", "Thank you", "Good morning", "How are you?", "What's your name?", | |
"I don't understand", "Please", "Sorry", "Yes", "No", "Where is" | |
], | |
"Spanish to English": [ | |
"Hola", "Gracias", "Buenos dรญas", "ยฟCรณmo estรกs?", "ยฟCรณmo te llamas?", | |
"No entiendo", "Por favor", "Lo siento", "Sรญ", "No", "Dรณnde estรก" | |
], | |
"English to Korean": [ | |
"Hello", "Thank you", "Good morning", "How are you?", "What's your name?", | |
"I don't understand", "Please", "Sorry", "Yes", "No", "Where is" | |
], | |
"Korean to English": [ | |
"์๋ ํ์ธ์", "๊ฐ์ฌํฉ๋๋ค", "์ข์ ์์นจ์ ๋๋ค", "์ด๋ป๊ฒ ์ง๋ด์ธ์?", "์ด๋ฆ์ด ๋ญ์์?", | |
"์ดํด๊ฐ ์ ๋ผ์", "์ ๋ฐ", "์ฃ์กํฉ๋๋ค", "๋ค", "์๋์", "์ด๋์ ์์ด์" | |
] | |
} | |
# Background worker for model loading and inference | |
class ModelWorker: | |
def __init__(self): | |
self.model = None | |
self.request_queue = queue.Queue() | |
self.response_queue = queue.Queue() | |
self.worker_thread = threading.Thread(target=self._worker_loop, daemon=True) | |
self.worker_thread.start() | |
def _worker_loop(self): | |
# Initialize model in the worker thread | |
print("Initializing model in background thread...") | |
# CPU optimization settings | |
cpu_count = multiprocessing.cpu_count() | |
optimal_threads = max(4, cpu_count - 2) # Leave two cores free | |
# Initialize with the most optimized settings | |
start_time = time.time() | |
self.model = LlamaClass( | |
model_path=base_model_path, | |
lora_path=adapter_path, | |
n_ctx=512, # Larger context for longer translations | |
n_threads=optimal_threads, # Optimized thread count | |
n_batch=1024, # Large batch for parallel processing | |
use_mmap=True, # Efficient memory mapping | |
n_gpu_layers=n_gpu_layers, # GPU acceleration if available | |
seed=42, # Consistent results | |
verbose=False, # Reduce overhead | |
main_gpu=0, # Primary GPU | |
tensor_split=None, # Auto-distribute across GPUs if multiple | |
rope_freq_base=10000, # Optimized attention parameters | |
rope_freq_scale=1.0, | |
) | |
print(f"Model loaded in {time.time() - start_time:.2f} seconds") | |
# Pre-warm the model with common phrases | |
self._prewarm_model() | |
# Process requests | |
while True: | |
try: | |
request = self.request_queue.get() | |
if request is None: # Shutdown signal | |
break | |
direction, text, callback_id = request | |
result = self._process_translation(direction, text) | |
self.response_queue.put((callback_id, result)) | |
except Exception as e: | |
print(f"Error in worker thread: {e}") | |
self.response_queue.put((callback_id, f"Error: {str(e)}")) | |
def _prewarm_model(self): | |
"""Pre-compute common translations to warm up the model""" | |
print("Pre-warming model with common phrases...") | |
start = time.time() | |
for direction, phrases in COMMON_PHRASES.items(): | |
for phrase in phrases[:3]: # Just do a few to warm up | |
self._process_translation(direction, phrase) | |
print(f"Model pre-warming completed in {time.time() - start:.2f} seconds") | |
def _process_translation(self, direction, text): | |
# Skip empty inputs | |
if not text or not text.strip(): | |
return "" | |
# Check cache first for faster response | |
cache_key = f"{direction}:{text}" | |
if cache_key in translation_cache: | |
return translation_cache[cache_key] | |
# Start timing for performance tracking | |
start_time = time.time() | |
# Map language directions | |
lang_map = { | |
"English to Spanish": ("ENGLISH", "SPANISH"), | |
"Spanish to English": ("SPANISH", "ENGLISH"), | |
"Korean to English": ("KOREAN", "ENGLISH"), | |
"English to Korean": ("ENGLISH", "KOREAN") | |
} | |
if direction not in lang_map: | |
return "Invalid direction" | |
source_lang, target_lang = lang_map[direction] | |
# Efficient prompt format | |
prompt = f"[{source_lang}]{text.strip()}[{target_lang}]" | |
# Estimate appropriate token length based on input | |
input_tokens = len(text.split()) | |
max_tokens = min(200, max(50, int(input_tokens * 1.5))) | |
# Generate translation with optimized settings | |
response = self.model.create_completion( | |
prompt, | |
max_tokens=max_tokens, | |
temperature=0.0, # Deterministic for faster inference | |
top_k=1, # Only consider most likely token | |
top_p=1.0, # No sampling | |
repeat_penalty=1.0, # No repeat penalty | |
stream=False # Get complete response at once | |
) | |
translation = response['choices'][0]['text'].strip() | |
# Cache result | |
if len(translation_cache) >= MAX_CACHE_SIZE: | |
# Remove oldest entry (first key) | |
translation_cache.pop(next(iter(translation_cache))) | |
translation_cache[cache_key] = translation | |
# Log performance | |
inference_time = time.time() - start_time | |
tokens_per_second = (input_tokens + len(translation.split())) / inference_time | |
print(f"Translation: {inference_time:.3f}s ({tokens_per_second:.1f} tokens/sec)") | |
return translation | |
def request_translation(self, direction, text, callback_id): | |
"""Queue a translation request""" | |
self.request_queue.put((direction, text, callback_id)) | |
# Create worker instance | |
worker = ModelWorker() | |
# Counter for request IDs | |
next_request_id = 0 | |
# Gradio interface functions | |
def translate(direction, text, progress=gr.Progress()): | |
"""Queue translation request and wait for result""" | |
global next_request_id | |
# Check cache first for immediate response | |
cache_key = f"{direction}:{text}" | |
if cache_key in translation_cache: | |
return translation_cache[cache_key] | |
# If input is very short, check if we have a similar cached phrase | |
if len(text) < 20: | |
for cached_key in translation_cache: | |
cached_dir, cached_text = cached_key.split(":", 1) | |
if cached_dir == direction and cached_text.lower().startswith(text.lower()): | |
return translation_cache[cached_key] | |
# Generate unique request ID | |
request_id = next_request_id | |
next_request_id += 1 | |
# Queue the request | |
worker.request_translation(direction, text, request_id) | |
# Wait for the response (with progress feedback) | |
progress(0, desc="Translating...") | |
max_wait = 30 # Maximum wait time in seconds | |
start_time = time.time() | |
while time.time() - start_time < max_wait: | |
progress((time.time() - start_time) / max_wait) | |
# Check for our response | |
try: | |
while not worker.response_queue.empty(): | |
resp_id, result = worker.response_queue.get_nowait() | |
if resp_id == request_id: | |
progress(1.0) | |
return result | |
except queue.Empty: | |
pass | |
# Small sleep to prevent CPU hogging | |
time.sleep(0.05) | |
progress(1.0) | |
return "Translation timed out. Please try again." | |
# Create Gradio interface | |
with gr.Blocks(title="Ultra-Fast Translation App") as iface: | |
gr.Markdown(f""" | |
## Ultra-Fast Translation App | |
Running on: {'GPU: ' + gpu_name if has_gpu else 'CPU only'} | |
""") | |
with gr.Row(): | |
direction = gr.Dropdown( | |
choices=["English to Spanish", "Spanish to English", "Korean to English", "English to Korean"], | |
label="Translation Direction", | |
value="English to Spanish" | |
) | |
with gr.Row(): | |
input_text = gr.Textbox(lines=5, label="Input Text", placeholder="Enter text to translate...") | |
output_text = gr.Textbox(lines=5, label="Translation") | |
# Add translate button | |
translate_btn = gr.Button("Translate") | |
translate_btn.click(fn=translate, inputs=[direction, input_text], outputs=output_text) | |
# Optimization options | |
with gr.Accordion("Advanced Options", open=False): | |
gr.Markdown(""" | |
### Performance Tips | |
- Short sentences translate faster than long paragraphs | |
- Common phrases may be cached for instant results | |
- First translation might be slower as the model warms up | |
""") | |
# Add examples with preloaded common phrases | |
gr.Examples( | |
examples=[ | |
["English to Spanish", "Hello, how are you today?"], | |
["Spanish to English", "Hola, ยฟcรณmo estรกs hoy?"], | |
["English to Korean", "The weather is nice today."], | |
["Korean to English", "์๋ ํ์ธ์, ๋ง๋์ ๋ฐ๊ฐ์ต๋๋ค."] | |
], | |
inputs=[direction, input_text], | |
fn=translate, | |
outputs=output_text | |
) | |
# Launch with optimized settings | |
iface.launch( | |
debug=False, | |
show_error=True, | |
share=False, # Don't share publicly by default | |
quiet=True, # Reduce console output | |
server_name="0.0.0.0", | |
server_port=7860 | |
) |