Spaces:
Running
Running
File size: 3,733 Bytes
d43ed98 452f50d 5e38ec7 452f50d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
#%%
from text2vec import SentenceModel
from qdrant_client import QdrantClient
from qdrant_client.models import VectorParams, Distance, PointStruct
def deterministic_id(text):
import hashlib
return int(hashlib.sha256(text.encode('utf-8')).hexdigest(), 16) >> 128
def build_qa_vector_store(model_name, collection_name):
import pandas as pd
# 讀取資料
df = pd.read_excel("一百問三百答.xlsx", sheet_name=0)
df.columns = ['Question', 'Answer']
original_len = len(df)
questions = df['Question'].tolist()
answers = df['Answer'].tolist()
# 初始化模型
model = SentenceModel(model_name)
question_vectors = model.encode(questions, normalize_embeddings=True)
embedding_dim = len(question_vectors[0])
# 初始化 Qdrant
client = QdrantClient(path="./qadrant_data")
# 建立新的 collection(重新指定向量維度)
client.recreate_collection(
collection_name=collection_name,
vectors_config=VectorParams(size=embedding_dim, distance=Distance.COSINE)
)
points = [
PointStruct(
id=deterministic_id(q + a),
vector=vector.tolist(),
payload={"question": q, "answer": a}
)
for q, a, vector in zip(questions, answers, question_vectors)
]
client.upsert(collection_name=collection_name, points=points)
print(f"✅ 向量資料庫建立完成,共嵌入 {len(points)} 筆 QA。")
client.scroll(collection_name=collection_name, limit=100)
def retrieve_and_rerank(query, model_name, collection_name, cross_encoder_model, score_threshold=0.6, search_top_k=25, rerank_top_k=5):
from semantic_reranker import rerank_results
model = SentenceModel(model_name)
client = QdrantClient(path="./qadrant_data")
query_vector = model.encode(query, normalize_embeddings=True)
results = client.search(
collection_name=collection_name,
query_vector=query_vector.tolist(),
limit=search_top_k,
score_threshold=score_threshold
)
retrieved_answers = [r.payload["answer"] for r in results]
# 用 cross-encoder rerank
reranked = rerank_results(
cross_encoder_model=cross_encoder_model,
query=query,
candidate_passages=retrieved_answers,
top_k=rerank_top_k
)
return reranked
def generate_response_from_local_llm(query, passages, tokenizer, model, max_new_tokens=256):
context = "\n".join([f"- {p}" for p in passages])
if not passages:
return "抱歉,沒有找到相關資料。"
prompt = f"""你是一個客服助理。請根據以下資料回答使用者問題。
問題:{query}
相關資料:
{context}
回答時注意:。
- 一定要針對問題回答
- 若是問題太過負面一定要先反駁,再巧妙的轉移焦點或拒答。
- 只回答問題中提到的內容,避免無關的話題。
- 只使用相關資料的內容來回答問題,避免添加個人意見或無關的資訊,若有必要可拒答。
- 只回答正面、積極的內容,避免使用負面或消極的語言。
- 請以溫暖又充滿人性的方式回答問題。
- 回答時平易近人,像和朋友交談一樣。
- 精簡回答,避免冗長的解釋。
回答:"""
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=0.95,
temperature=0.7
)
decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
# 提取回答部分
answer = decoded_output.split("回答:", 1)[-1].strip()
# answer = answer + "大罷免!大成功!"
return answer |